代数数域理论
1897年4月10日
第一部分 一般数域理论
1、代数数和数域
§1、数域及其共轭
§2、代数整数
§3、数的范数、不同和判别式,数域的基
2、数域的理想
§4、理想的乘法、可除性,素理想
§5、理想唯一分解为素理想
§6、数域的形式和内容
3、相对于理想的同余
§7、理想的范数及其性质
§8、理想论中的费马定理,φ函数
§9、素理想的本原根
4、域的判别式及其除子
§10、关于判别式除子的定理,关于整函数的引理
§11、基本方程的因子分解和判别式
5、扩域
6、域的单位
7、域的理想类
8、域的可约形式
9、域中的阶
第二部分 伽罗瓦数域
10、伽罗瓦数域的素理想及其子域
11、伽罗瓦数域的不同和判别式及其子域
12、伽罗瓦数域的算术性质和代数性质之间的联系
13、数域的构造
14、1次素理想和类概念
15、素数次循环扩张域
第三部分 二次数域
16、二次数域中数的因子分解
17、二次数域中的类及其特征集
18、二次数域中类的存在性
19、二次数域理想类数的判别式
20、二次数域的阶和模
第四部分 分圆域
第五部分 库默尔数域