热的解析理论

《热的解析理论》是傅立叶的代表作,书中提出的傅里叶定律奠定了热传导的基础。傅立叶级数在此理论中扮演关键角色,对数学和物理学产生深远影响。傅立叶的工作启发了后来的数学家,如狄利克雷和黎曼,推动了积分理论和函数概念的发展。
摘要由CSDN通过智能技术生成

约瑟夫·傅立叶 著,桂质亮 译:热的解析理论(Analytical theory of heat)
http://book.chaoxing.com/ebook/detail.jhtml?id=10072448&page=1
据剑桥1878年亚历山大·弗里曼英译本译出
本书是傅立叶的代表作,集中反映了他在数学和物理方面所作的重要贡献。
发现导热基本规律——傅里叶定律(Fourier's Law):dQ=-λdAδt/δn,q=-λgradt,系统中任一点的热流密度与该点温度梯度成正比而方向相反。
式中
dQ——热传导速率,W或J/s
dA——导热面积,m^2
δt/δn——温度梯度,℃/m或K/m
λ——导热系数,W/(m·℃)或W/(m·K)
负号表示传热方向与温度梯度方向相反
用热通量来表示q=dQ/dA=-λδt/δn
对一维稳态热传导dQ=-λdAdt/dx
λ表征材料导热性能的物性参数
λ越大,导热性能越好
注:傅里叶定律只使用于各向同性材料
各向同性材料:热导率在各个方向是相同的
导热系数λ在数值上等于单位温度梯度下的热通量。
导热系数λ是分子围观运动的宏观表现,反映了物质微观粒子传递热量的特性。
各种物质的导热系数
λ_金属固体>λ_非金属固体>λ_液体>λ_气体
λ_固相>λ_液相>λ_气相
0℃时:λ_冰=2.22w/m·℃
λ_水=0.551w/m·℃
λ_冰=0.0183w/m·℃
汉译者
前言(节选)
琼·博普蒂斯特·约瑟夫·傅立叶(Jean Baptiste Joseph Fourier,1768.3.21-1830.5.16)是19世纪法国数学家和数学物理学家。他的工作对数学和物理学产生了很大影响。在数学上,他迈出了19世纪第一大步,而且是真正极为重要的一步;在物理学方面,他的理论和方法几乎渗透到近代物理学的所有部门,支配了整个数学物理学。开尔文勋爵威廉·汤姆森(William Thomson,1824-1907)自称傅里叶关于热的工作影响了他在数学物理学方面的全部经历。
数学史家拉维茨(J.R.Ravets)和格拉顿-吉尼斯(I.Grattan-Guinness):“由于人们仅仅只注意傅里叶级数和傅里叶积分这两个结果,并在评价它们的推导时使用了不合时代的严格性标准,所以长期把傅里叶的主要成就史给搞混了。我们最好把傅里叶的主要成就理解为这样两个方面:第一,把物理问题的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值