深度学习
文章平均质量分 83
码科智能
深度学习领域多年从业者,分享人工智能前沿技术,深入探究各个垂域应用。
展开
-
2024年深度学习、计算机视觉与大模型面试题综述,六大专题数百道题目
本项目涵盖了大模型(LLMs)专题、计算机视觉与感知算法专题、深度学习基础与框架专题、自动驾驶、智慧医疗等行业垂域专题、手撕项目代码专题、优异开源资源推荐专题共计6大专题模块。我们将持续整理汇总2024年度最新的面试题并详细解析这些题目,希望能成为大家斩获offer路上一份有效的辅助资料。原创 2023-12-26 21:15:52 · 588 阅读 · 0 评论 -
模型部署系列:10x速度提升,Yolov8检测模型稀疏化——CPU上超500FPS
专注于让 YOLOv8 等深度学习模型在 CPU 上快速运行,DeepSparse在 FP32 下的速度快 4 倍,在 INT8 下的速度快 10 倍。原创 2023-12-14 15:10:37 · 1856 阅读 · 1 评论 -
有意思的损失函数:一文详细解释Yolov5中Objectness的重要性
**损失函数对不同的框进行不同的处理,最佳框与所有其他框之间的区分机制是 YOLO 损失的核心。**使用单独的对象置信度损失 objectness 来处理分数确实比将类概率 confidence 视为分数表现得更好,在SSD目标检测中考虑类概率作为置信度分数其效果要明显差于带置信度的Yolo模型。原创 2023-12-13 14:48:16 · 1302 阅读 · 0 评论 -
人工智能数据集可视化统计分析工具:快速了解你的数据集
Lightly Insights:可以轻松获取关于机器学习数据集基本洞察的工具,可以可视化图像数据集的基本统计信息,仅需提供一个包含图像和对象检测标签的文件夹,它会生成一个包含指标和图表的静态 HTML 网页。[1] 详细内容请参阅[2] 更多资料请参阅。原创 2023-12-11 17:40:41 · 283 阅读 · 0 评论 -
算法工程师岗位面试必备,讲透深度学习面试题,详解人工智能生成式任务与AI大模型面试题
深度学习面试题,AIGC与大模型,视觉感知算法,Leetcode高频原创 2023-08-02 15:35:48 · 592 阅读 · 0 评论 -
【AI工具】 一款多SOTA模型集成的高精度自动标注工具(直接安装使用,附源码)
人工智能自动化标注工具原创 2023-06-08 09:19:29 · 1565 阅读 · 1 评论 -
【Pytorch】自定义模型、自定义损失函数及模型删除修改层的常用操作
自定义模型、自定义损失函数及模型删除修改层的常用操作原创 2023-06-07 11:37:51 · 1315 阅读 · 0 评论 -
【Pytorch】模型摘要信息获取、模型参数获取及模型保存的三种方法
模型摘要信息获取、模型参数获取及模型保存的三种方法原创 2023-06-06 10:46:42 · 985 阅读 · 0 评论 -
PyTorch 提示和技巧:从张量到神经网络
深入研究 PyTorch 以及如何从头开始构建神经网络。原创 2023-06-05 11:27:32 · 707 阅读 · 0 评论 -
寻找下一款Prisma APP:深度学习在图像处理中的应用探讨
图像处理类过程主要分为三步,包括图像增强、图像变换、图像生成。图像增强是指从图像到图像;图像变换是指从图像到另外一张图像;图像生成是指直接生成新的图像,这三类都可以在开发者领域找到突破点。转载 2016-11-21 09:47:27 · 5071 阅读 · 0 评论 -
图像处理之灰度模糊图像与彩色清晰图像的变换
本文介绍一种在灰度图像复原成彩色RGB图像方面的代表性工作:**《全局和局部图像的联合端到端学习图像自动着色并且同时进行分类》**另外基于图像处理的方法,如图像增强和图像复原,以及曾经很火的超分辨率算法。都是在不增加额外信息的前提下的实现方式。原创 2016-12-24 17:18:25 · 19883 阅读 · 2 评论 -
DL开源框架Caffe | 模型微调 (finetune)的场景、问题、技巧以及解决方案
DL开源框架Caffe | 模型微调 (finetune)的场景、问题、技巧以及解决方案原创 2017-04-12 11:47:40 · 10295 阅读 · 0 评论 -
DL开源框架Caffe | 目标检测Faster-rcnn训练自己数据问题整理
目标检测Faster-rcnn训练自己数据问题整理原创 2017-05-23 17:03:49 · 3131 阅读 · 0 评论 -
深度学习_资料汇总链接(目标检测/可视化/目标识别/自然语言处理/OCR)
目标检测/可视化/目标识别/自然语言处理/OCR原创 2017-09-13 16:27:33 · 2517 阅读 · 0 评论 -
目标检测 | SSD原理以及相关问题
SSD: Single Shot MultiBox Detectorintro: ECCV 2016 Oral arxiv: http://arxiv.org/abs/1512.02325 paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv原创 2017-09-28 14:52:15 · 7643 阅读 · 0 评论 -
机器学习特征提取 | 自动特征工程featuretools
1、什么是Featuretools?为了能使框架普适,就像pandas用于数据准备或scikit-learn用于机器学习。链接:https://www.featuretools.com/原创 2017-11-07 11:41:34 · 8075 阅读 · 3 评论 -
开源框架MXNet | 环境变量配置(显存)
开源框架MXNet | 环境变量配置(显存)原创 2017-11-08 19:56:51 · 5444 阅读 · 0 评论 -
图像分割 | FCN数据集制作的全流程(图像标注)
一 全卷积神经网络深度学习图像分割(FCN)训练自己的模型大致可以以下三步:1.为自己的数据制作label;2.将自己的数据分为train,val和test集;3.仿照voc_lyaers.py编写自己的输入数据层。其中主要是如何制作自己的数据label困扰着大家。补充:由于图像大小的限制,这里给几个图像Resize的脚本:(1)单张图片的resize# coding = utf-8 impor原创 2017-06-06 15:52:07 · 56322 阅读 · 38 评论 -
深度学习的四个部分
深度学习领域的学术研究可以包含四部分:优化(Optimization),泛化(Generalization),表达(Representation)以及应(Applications)。除了应用(Applications)之外每个部分又可以分成实践和理论两个方面。优化(Optimization):深度学习的问题最后似乎总能变成优化问题,这个时候数值优化的方法就变得尤其重要。从实践方面来说,现在最为推崇的原创 2015-04-29 09:15:54 · 1897 阅读 · 0 评论 -
深度学习数据集(二)
人体姿态 gesture 文本识别 数据集原创 2015-11-20 15:09:22 · 10104 阅读 · 0 评论 -
重磅!从单层感知器到深度学习以及深度学习必知的框架
单层神经网络(感知器) 深度学习 开源框架原创 2016-01-14 19:59:36 · 13098 阅读 · 6 评论 -
深度学习2015年文章整理(CVPR2015)
CVPR2015paper CNN 3D-model原创 2016-01-20 16:31:55 · 12533 阅读 · 5 评论 -
CNN卷积神经网络的改进(15年最新paper)
卷积神经网络 改进转载 2016-01-11 21:51:25 · 20192 阅读 · 2 评论 -
深度学习入门必备 必看 必掌握
Deep Learning深度学习大牛Bengio原创 2015-10-19 10:35:25 · 2730 阅读 · 0 评论 -
卷积神经网络改进想法初探(上篇)
CNN 卷积神经网络 深度学习转载 2015-10-20 09:16:33 · 13952 阅读 · 11 评论 -
CV codes代码分类整理合集
CV codes代码分类整理合集机器学习转载 2015-10-23 08:50:32 · 1734 阅读 · 0 评论 -
深度学习数据集(一)
深度学习 常用数据集原创 2015-07-01 09:45:36 · 3300 阅读 · 0 评论 -
《Deep Learning》全书已完稿_附全书电子版
Bengio大神的《Deep Learning》全书。经过两年半的努力,由谷歌大脑团队科学家 Ian Goodfellow, Yoshua Bengio and Aaron Courville撰写MIT出版的《Deep Learning》,今天完成最终稿了。提供整本书的下载链接。原创 2016-04-08 12:48:12 · 30430 阅读 · 6 评论 -
深入浅出——搞懂卷积神经网络误差分析(一)
卷积神经网络 误差分析 BP算法原创 2016-04-23 18:25:57 · 28504 阅读 · 0 评论 -
深度学习目标检测算法——Faster-Rcnn
Faster rcnn是用来解决计算机视觉(CV)领域中Object Detection的问题的。最初的检测分类的解决方案是:Hog+SVM来实现的;深度学习中经典的解决方案是使用: RCNN原创 2016-08-29 19:07:40 · 9074 阅读 · 2 评论 -
正则化方法:L1和L2 regularization、数据集扩增、dropout
正则化 过拟合 dropout Early stopping原创 2015-11-02 21:14:48 · 9541 阅读 · 0 评论 -
文献 | 2010-2016年被引用次数最多的深度学习论文(修订版)
书籍 Deep learning引用次数最多的深度学习论文原创 2016-06-15 15:50:16 · 7789 阅读 · 0 评论 -
算法优化——如何将人脸检测的速度做到极致
“人脸检测”是从图像中确定人脸的位置和大小,如下图所示;“人脸识别”是识别图像中的人脸是张三还是李四,是身份识别。 人脸检测最经典的方法是Haar+AdaBoost。原创 2016-06-30 21:08:06 · 20453 阅读 · 2 评论 -
卷积神经网络中图像池化操作全解析
卷积神经网络 最大池化 平均池化 随机池化 最大池化的matlab的实现原创 2016-05-30 22:34:20 · 31823 阅读 · 2 评论 -
深入浅出——搞懂卷积神经网络的过拟合、梯度弥散、batchsize的影响的问题(二)
过拟合 梯度弥散 batchsize 不平衡数据集原创 2016-04-23 22:13:03 · 30943 阅读 · 1 评论 -
卷积神经网络源码——最终输出部分的理解
针对matlab版本的卷积神经网络的最终分类器(输出部分)的理解:原创 2016-04-14 14:09:58 · 5147 阅读 · 0 评论 -
ImageNet Classification with Deep Convolutional Neural Networks笔记(摘要版)
Contents 1.全部架构 2.降低过拟合 3.学习细节 4.结果 5.讨论本笔记为论文的摘要版,详细数据和论文详解见: http://www.gageet.com/2014/09140.php本文训练了一个深度卷积神经网络,来将ILSVRC-2010中1.2M的高分辨率图像数据分为1000类。测试结果,Top-1和Top-5的错误率分别为37.5%和17%,优于当时最优的水平。后来作转载 2015-07-10 09:47:26 · 1146 阅读 · 0 评论