数据结构与算法:动态规划计算编辑距离

编辑距离,又称Levenshtein Distance,是衡量两个序列相似度的指标,通过插入、删除、替换三种操作来转换序列。动态规划算法用于计算编辑距离,初始化二维数组并按递归方式处理字符串末尾字符匹配情况,最终得出最小编辑步骤数。
摘要由CSDN通过智能技术生成

一、编辑距离的概念

  编辑距离,由俄罗斯科学家 Vladimir Levenshtein提出,因而得名 Levenshtein Distance。Levenshtein Distance 是用来度量两个序列相似程度的指标。通俗地来讲,编辑距离指的是在两个序列s1、s2之间,由其中一个序列s1转换为另一个序列s2所需要的最少单字符编辑操作次数。
  特别规定,编辑操作限于三种类型:
  1. 插入一个字符。
  2. 删除一个字符。
  3. 替换一个字符。
  示例:

输入: word1 = "horse", word2 = "ros"
输出: 3
解释: 
horse -> rorse ('h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/edit-distance
著作权归领扣网
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值