一只小蜜蜂...
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 40 Accepted Submission(s) : 15
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
有一只经过训练的蜜蜂只能爬向右侧相邻的蜂房,不能反向爬行。请编程计算蜜蜂从蜂房a爬到蜂房b的可能路线数。
其中,蜂房的结构如下所示。
其中,蜂房的结构如下所示。
Input
输入数据的第一行是一个整数N,表示测试实例的个数,然后是N 行数据,每行包含两个整数a和b(0<a<b<50)。
Output
对于每个测试实例,请输出蜜蜂从蜂房a爬到蜂房b的可能路线数,每个实例的输出占一行。
Sample Input
2 1 2 3 6
Sample Output
1 3
Author
Source
递推求解专题练习(For Beginner)
分析:
分析:
首先想到这道题是递推的应用,于是分析题目,观察到每个蜂房都和与它标号相邻的前两个标号蜂房相邻,既是x-1号和x-2号,于是猜测这是斐波拉数列的应用,根据猜测继续分析得到递推公式 NUM(a to b) = NUM(b - 1) + NUM(b-2);以a为端点,直到a停止。于是得到AC代码如下(由于数据比较大,直接用int要产生溢出所以改用__int64):
分析:
首先想到这道题是递推的应用,于是分析题目,观察到每个蜂房都和与它标号相邻的前两个标号蜂房相邻,既是x-1号和x-2号,于是猜测这是斐波拉数列的应用,根据猜测继续分析得到递推公式 NUM(a to b) = NUM(b - 1) + NUM(b-2);以a为端点,直到a停止。于是得到AC代码如下(由于数据比较大,直接用int要产生溢出所以改用__int64):
#include <stdio.h>
int main()
{
int f1,f2,n,i,j;
__int64 f[51];
f[1]=1;f[2]=2;
for (i=3;i<51;i++)
{
f[i]=f[i-1]+f[i-2];
}
while (scanf("%d",&n)!=EOF)
{
for (j=0;j<n;j++)
{
scanf("%d%d",&f1,&f2);
printf("%I64d\n",f[f2-f1]);
}
}
return 0;
}