深度学习
赵大寳Note
公众号:赵大寳Note(ID:StateOfTheArt),跟我一起探索世界
展开
-
DeePray:深度学习推荐算法新基建
开源项目 DeePray 发布啦!针对推荐算法,特别是点击率预估领域目不暇接的诞生新模型现状,如何将心仪模型快速应用于领域内一直是一项棘手的问题,DeePray这个项目通过统一构建数据流水线,提供各类网络层组件,在此之上,以模块化设计,用组件之砖,搭建各类网络之模型,并以灵活配置式的方式提供调用接口,你也可以在DeePray的基础上,选用各类组件模块,就像玩乐高积木一样建造你自己的模型。deepray.model目录下已实现LR、FM、FFM、DeepFM、Wide&Deep、Deep&Cr原创 2020-06-05 21:32:05 · 677 阅读 · 2 评论 -
tensorflow:input pipeline性能指南
以tf.data优化训练数据 Google开发者大会2018tensorflow:input pipeline性能指南转载 2019-06-10 19:08:46 · 533 阅读 · 0 评论 -
《Deep Learning Specialization学习笔记》Sequence Models
Week 11、Sequence data 举例: 语音识别、音乐合成、情感分类、DNA序列分析、机器翻译、视频运动识别、命名实体识别 2、如何构建一套符号表示X、Y 以命名实体识别为例,构建词汇表为每一个单词编号,使用one_hot表示一串文字 3、RNN的基础知识,网络的Noationsentence中人名识别为什么不可以使用标准的神经网络?1、在不同的例子(句子)中,输入和...原创 2018-05-23 00:36:32 · 378 阅读 · 0 评论 -
《DropoutNet: Addressing Cold Start in Recommender Systems》论文阅读笔记
DropoutNet: Addressing Cold Start in Recommender Systems 来源:NIPS 2017,原文链接 作者:Maksims Volkovs、Guangwei Yu and Tomi Poutanen from layer6.ai公司 转载请注明出处:http://www.scholat.com/hailin由于隐语义模型...原创 2018-02-27 12:04:11 · 1546 阅读 · 0 评论 -
Keras深度学习模型可视化
一、Example模型:[1 input] -> [2 neurons] -> [1 output]from keras.models import Sequentialfrom keras.layers import Densemodel = Sequential()model.add(Dense(2, input_dim=1, activation='relu'))model.add(D原创 2017-10-09 21:50:42 · 3006 阅读 · 0 评论 -
《Collaborative Deep Learning for Recommender Systems》阅读笔记
论文:Collaborative Deep Learning for Recommender Systems 来源:KDD 2015 原文链接 转载请注明出处:www.scholat.com/hailin现存的推荐方法可主要分为三类:基于内容的方法(content-based)协同过滤(Collaborative Filtering,CF)混合两者的方法(Hybrid me原创 2017-11-22 23:58:45 · 2498 阅读 · 0 评论 -
深度学习在推荐算法上的应用进展
文章来源:知乎 作者:赵鑫深度学习将在多领域产生重要影响摘要:最近几年是深度学习发展的黄金时间,在多个领域取得了重要进展,包括图像领域、语音领域、文本领域等。深度学习为科研工作者提供了一种非常有效的技术途径,其本质上是对数据特征进行深层次的抽象挖掘,通过大规模数据来学习有效的特征表示以及复杂映射机制,从而建立起有效的数据模型。从方法上来说,深度学习具有的优点本质上是领域无关的。因此,在可预见的未来转载 2017-10-22 22:08:42 · 3048 阅读 · 0 评论 -
Keras源码分析之常用网络层
Dense层 Dense就是常用的全连接层 源码分析:model = Sequential()model.add(LSTM(4, input_shape=(1, look_back)))model.add(Dense(2213)) ## 2213是输出长度model.compile(loss='categorical_crossentropy', optimizer='adam')mo原创 2017-08-07 21:43:41 · 1281 阅读 · 0 评论 -
深度学习中Embedding层有什么用?
在深度学习实验中经常会遇Eembedding层,然而网络上的介绍可谓是相当含糊。比如 Keras中文文档中对嵌入层 Embedding的介绍除了一句 “*嵌入层将正整数(下标)转换为具有固定大小的向量*”之外就不愿做过多的解释。那么我们为什么要使用嵌入层 Embedding呢?原创 2017-09-05 10:57:14 · 166184 阅读 · 5 评论 -
Keras中的多分类损失函数categorical_crossentropy
from keras.utils.np_utils import to_categorical注意:当使用categorical_crossentropy损失函数时,你的标签应为多类模式,例如如果你有10个类别,每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0。可以使用这个方法进行转换:from keras.utils.np_utils import to_catego原创 2017-08-07 14:55:19 · 54773 阅读 · 3 评论 -
Python中用Keras构建LSTM模型进行时间序列预测
Time series prediction problems are a difficult type of predictive modeling problem.Unlike regression predictive modeling, time series also adds the complexity of a sequence dependence among the input翻译 2017-07-26 17:05:45 · 26013 阅读 · 0 评论