使用sklearn之LabelEncoder将Label标准化

本文介绍如何使用sklearn的LabelEncoder进行类别数据编码。通过多个示例展示了如何将文本和数值标签转换为整数,适用于机器学习任务。同时,提供了DataFrame中特定列编码的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LabelEncoder可以将标签分配一个0—n_classes-1之间的编码
将各种标签分配一个可数的连续编号:

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6]) # Transform Categories Into Integers
array([0, 0, 1, 2], dtype=int64)
>>> le.inverse_transform([0, 0, 1, 2]) # Transform Integers Into Categories
array([1, 1, 2, 6])
>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"]) # Transform Categories Into Integers
array([2, 2, 1], dtype=int64)
>>> list(le.inverse_transform([2, 2, 1])) #Transform Integers Into Categories
['tokyo', 'tokyo', 'paris']

将DataFrame中的所有ID标签转换成连续编号:

from sklearn.preprocessing import LabelEncoder
import numpy as np
import pandas as pd
df=pd.read_csv('testdata.csv',sep='|',header=None)
    0   1   2   3   4   5
0   37  52  55  50  38  54
1   17  32  20  9   6   48
2   28  10  56  51  45  16
3   27  49  41  30  53  19
4   44  29  8   1   46  13
5   11  26  21  14  7   33
6   0   39  22  33  35  43
7   18  15  47  5   25  34
8   23  2   4   9   3   31
9   12  57  36  40  42  24
le = LabelEncoder()
le.fit(np.unique(df.values))
df.apply(le.transform)
    0   1   2   3   4   5
0   37  52  55  50  38  54
1   17  32  20  9   6   48
2   28  10  56  51  45  16
3   27  49  41  30  53  19
4   44  29  8   1   46  13
5   11  26  21  14  7   33
6   0   39  22  33  35  43
7   18  15  47  5   25  34
8   23  2   4   9   3   31
9   12  57  36  40  42  24

将DataFrame中的每一行ID标签分别转换成连续编号:

import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline


class MultiColumnLabelEncoder:
    def __init__(self,columns = None):
        self.columns = columns # array of column names to encode

    def fit(self,X,y=None):
        return self # not relevant here

    def transform(self,X):
        '''
        Transforms columns of X specified in self.columns using
        LabelEncoder(). If no columns specified, transforms all
        columns in X.
        '''
        output = X.copy()
        if self.columns is not None:
            for col in self.columns:
                output[col] = LabelEncoder().fit_transform(output[col])
        else:
            for colname,col in output.iteritems():
                output[colname] = LabelEncoder().fit_transform(col)
        return output

    def fit_transform(self,X,y=None):
        return self.fit(X,y).transform(X)
MultiColumnLabelEncoder(columns = [0, 1, 2, 3, 4, 5]).fit_transform(df)

或者

df.apply(LabelEncoder().fit_transform)
    0   1   2   3   4   5
0   8   8   8   7   5   9
1   3   5   2   2   1   8
2   7   1   9   8   7   1
3   6   7   6   4   9   2
4   9   4   1   0   8   0
5   1   3   3   3   2   5
6   0   6   4   5   4   7
7   4   2   7   1   3   6
8   5   0   0   2   0   4
9   2   9   5   6   6   3
# Create some toy data in a Pandas dataframe
fruit_data = pd.DataFrame({
    'fruit':  ['apple','orange','pear','orange'],
    'color':  ['red','orange','green','green'],
    'weight': [5,6,3,4]
})
    color   fruit   weight
0   red     apple   5
1   orange  orange  6
2   green   pear    3
3   green   orange  4
MultiColumnLabelEncoder(columns = ['fruit','color']).fit_transform(fruit_data)

或者

fruit_data[['fruit','color']]=fruit_data[['fruit','color']].apply(LabelEncoder().fit_transform)
    color   fruit   weight
0   2       0       5
1   1       1       6
2   0       2       3
3   0       1       4
在scikit-learn(sklearn)中,有一些常用的数据预处理方法可以帮助我们准备和处理数据。以下是一些常见的数据预处理方法: 1. 特征缩放(Feature Scaling):将不同特征的数值范围缩放到相同的尺度,常用的方法有标准化(Standardization)和归一化(Normalization)。 - 标准化使用 `sklearn.preprocessing.StandardScaler` 类可以将特征缩放为均值为0,方差为1的标准正态分布。 - 归一化:使用 `sklearn.preprocessing.MinMaxScaler` 类可以将特征缩放到指定的最小值和最大值之间。 2. 缺失值处理(Handling Missing Values):处理含有缺失值的数据,常用的方法有删除缺失值、插补缺失值和使用特定值填充缺失值。 - 删除缺失值:使用 `sklearn.preprocessing.Imputer` 类中的 `remove()` 方法可以删除含有缺失值的样本。 - 插补缺失值:使用 `sklearn.preprocessing.Imputer` 类中的 `fit()` 和 `transform()` 方法可以对缺失值进行插补,常见的插补方法有均值、中位数和众数。 - 填充特定值:使用 `sklearn.preprocessing.Imputer` 类中的 `fit()` 和 `transform()` 方法可以使用特定值(如0或者指定的常数)来填充缺失值。 3. 标签编码(Label Encoding):将分类变量转换为数值编码,常用的方法是使用 `sklearn.preprocessing.LabelEncoder` 类。 4. 独热编码(One-Hot Encoding):将分类变量转换为二进制编码,常用的方法是使用 `sklearn.preprocessing.OneHotEncoder` 类。 5. 特征选择(Feature Selection):选择对目标变量具有较高预测能力的特征,常用的方法有方差选择法、递归特征消除法和基于树模型的特征选择法。 - 方差选择法:使用 `sklearn.feature_selection.VarianceThreshold` 类可以通过阈值来选择方差大于指定阈值的特征。 - 递归特征消除法:使用 `sklearn.feature_selection.RFE` 类可以递归地选择特征,根据模型的性能来判断特征的重要性。 - 基于树模型的特征选择法:使用 `sklearn.feature_selection.SelectFromModel` 类可以基于树模型的特征选择方法,通过训练树模型来判断特征的重要性。 这些是scikit-learn中常用的数据预处理方法,根据具体的问题和数据类型,可以选择合适的预处理方法来处理数据。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值