poj1160 Post Office 四边形优化dp

97 篇文章 0 订阅
Post Office
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 14051 Accepted: 7576

Description

There is a straight highway with villages alongside the highway. The highway is represented as an integer axis, and the position of each village is identified with a single integer coordinate. There are no two villages in the same position. The distance between two positions is the absolute value of the difference of their integer coordinates. 

Post offices will be built in some, but not necessarily all of the villages. A village and the post office in it have the same position. For building the post offices, their positions should be chosen so that the total sum of all distances between each village and its nearest post office is minimum. 

You are to write a program which, given the positions of the villages and the number of post offices, computes the least possible sum of all distances between each village and its nearest post office. 

Input

Your program is to read from standard input. The first line contains two integers: the first is the number of villages V, 1 <= V <= 300, and the second is the number of post offices P, 1 <= P <= 30, P <= V. The second line contains V integers in increasing order. These V integers are the positions of the villages. For each position X it holds that 1 <= X <= 10000.

Output

The first line contains one integer S, which is the sum of all distances between each village and its nearest post office.

Sample Input

10 5
1 2 3 6 7 9 11 22 44 50

Sample Output

9

Source

分析一下,这题,很不错的dp题,首先,dp[i][j]表示,从0到i修j个post office,sum[i][j]表示从i到j修一个post office的最短路!
那么dp[i][j]=dp[k][j-1]+sum[k+1][j](k>=0 k<=i);
sum[i][j]=sum[i][j-1]+p[i]-p[(i+j)/2];
我们讲讲这两个式子的得来!
首先,我们可以得到一个结论,在偶数个点中建一个邮局的最短方法,就是在,中间那两个点,且这两个点的距离是等价的!
如p0,p1,p2,p3,我们在p1,p2建在哪都是一个,都是p3-p1+p2-p0,这一点可以推广到所有的偶数个点,奇数个点,自然也是在最中间,
但是只有一个点!如么我们想要在加一个点呢?如在上p0,p1,p2,p3中加一个p4,那么怎么由sum[i][j-1]推到sum[i][j]呢?我们可以发现
只要加一个p4到p2的距离也就是p[j]-p[(i+j)/2]就可以了,其实,这个例子是很简单的,但也足也推到一般情况,我们再想,如果是
奇数个点呢?就比如p0,p1,p2,p3,p4再加上一个p5,最短路怎么算呢?我们可以很明显知道也是加上p[j]-p[(i+j)/2]!
我们再说说第一个式子的得来,
我们可以知道,从0到i,放j个邮局的最短方法,一定是0到i的某一个点k,得来的,也就是dp[k][j-1]得来的,因为,我们可以把k从0到
i进行,全部枚举,这样,前k个点,放j个邮局的最短路,加上一个从k+1到j放一个邮局的最短路,就可以得到了!这样这题就解决了,但是在极端的时候,dp[i][0]=sum[0][i],这了是要初始化做的,这题就可以a了!
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
#define inf 0x4f4f4f4f
int dp[320][320],sum[320][320],p[320];
int fmin(int a,int b)
{
    if(a<b)
    return a;
    return b;
}
int main()
{
    int n,m,i,j,k;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(i=0;i<n;i++)
        {
            scanf("%d",&p[i]);
        }
        memset(sum,0,sizeof(sum));

        for(i=0;i<n;i++)
            for(j=i+1;j<n;j++)
            {
                sum[i][j]=sum[i][j-1]+p[j]-p[(i+j)/2];
            }
        for(i=0;i<n;i++)
        {
            dp[i][0]=sum[0][i];
             for(j=1;j<m;j++)
            {
                dp[i][j]=inf;

            }
        }

        for(i=0;i<n;i++)
            for(j=1;j<m;j++)
                for(k=0;k<i;k++)
                {
                    dp[i][j]=fmin(dp[i][j],dp[k][j-1]+sum[k+1][i]);
                }

        printf("%d\n",dp[n-1][m-1]);//计数,都是从0开始的
    }
    return 0;
}
再来一个四边形优化的dp
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
#define inf 0x4f4f4f4f
int dp[320][320],sum[320][320],p[320],kk[320][320];
int fmin(int a,int b)
{
    if(a<b)
    return a;
    return b;
}
int main()
{
    int n,m,i,j,k;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(i=1;i<=n;i++)
        {
            scanf("%d",&p[i]);
        }
        memset(sum,0,sizeof(sum));

        for(i=1;i<=n;i++)
        {
            sum[i][i]=0;
            for(j=i+1;j<=n;j++)
            {
                sum[i][j]=sum[i][j-1]+p[j]-p[(i+j)/2];
            }
        }


        for(i=1;i<=m;i++)
        {

             for(j=1;j<=n;j++)
            {
                dp[i][j]=inf;
            }
        }
         for(i=1;i<=n;i++)
        {
            kk[1][i]=0;
            dp[1][i]=sum[1][i];
        }
        for(i=2;i<=m;i++)
        {
            kk[i][n+1]=n;
            for(j=n;j>i;j--)
            {
                for(k=kk[i-1][j];k<=kk[i][j+1];k++)
                {
                    if(dp[i-1][k]+sum[k+1][j]<dp[i][j])
                    {
                        dp[i][j]=dp[i-1][k]+sum[k+1][j];
                        kk[i][j]=k;
                    }
                }
            }
        }
        printf("%d\n",dp[m][n]);
    }
    return 0;
}


题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值