问题描述
有n个物体,重量分别是w0~wn-1,每个物体放入背包后可获得的收益分别为p0~pn-1,背包载重为M,且所有物体要么放要么不放,不能只放一部分。求如何放物体可以得到最高的收益。
问题分析
设f(i,m)表示第i步背包的总收益,其中i表示当前进行到了第i步,m为当前背包载重,则当前第i步只有两种选择:
将第i个物体放入背包
此时背包总收益就变成f(i-1,m-wi)+wi。第i个物体不放入背包
此时背包总收益就是f(i-1,m)。
第i步究竟怎么选择,知道就取决于这两种选择那个结果更大。因此要分别计算者两种情况的值,选较大者作为第i步的结果。
这就是一个典型x的递归。
代码实现
// 表示每一个物体是否放入背包
boolean[] isAdd = new boolean[n];
// 存储每个物体的重量
int[] weight =