[标签:数组,难度:简单]
在MATLAB中,有一个非常有用的函数 reshape
,它可以将一个矩阵重塑为另一个大小不同的新矩阵,但保留其原始数据。
给出一个由二维数组表示的矩阵,以及两个正整数r
和c
,分别表示想要的重构的矩阵的行数和列数。
重构后的矩阵需要将原始矩阵的所有元素以相同的行遍历顺序填充。
如果具有给定参数的reshape
操作是可行且合理的,则输出新的重塑矩阵;否则,输出原始矩阵。
示例 1:
输入: nums = [[1,2],[3,4]] r = 1, c = 4 输出: [[1,2,3,4]] 解释: 行遍历nums的结果是 [1,2,3,4]。新的矩阵是 1 * 4 矩阵, 用之前的元素值一行一行填充新矩阵。
示例 2:
输入: nums = [[1,2],[3,4]] r = 2, c = 4 输出: [[1,2],[3,4]] 解释: 没有办法将 2 * 2 矩阵转化为 2 * 4 矩阵。 所以输出原矩阵。
注意:
- 给定矩阵的宽和高范围在 [1, 100]。
- 给定的 r 和 c 都是正数。
我数学不好,根据自己的理解,以下是我的解法:
public int[][] matrixReshape(int[][] nums, int r, int c) {
int[][] matrix = new int[r][c];
int a = 0, b = 0, count = 0, row = nums.length, col = nums[0].length;
// 不满足重塑条件,返回原矩阵
if (r*c != row*col)
return nums;
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
matrix[a][b] = nums[i][j];
b++;
// 下一行
if (++count == c) {
a++;
b = 0;
count = 0;
}
}
}
return matrix;
}
根据LeetCode给出的提示:
1.M[i][j]=M[n*i+j] , where n is the number of cols. This is the one way of converting 2-d indices into one 1-d index
2.M[i] => M[n/i][n%i]
得出以下解法:
public int[][] matrixReshape2(int[][] nums, int r, int c) {
int[][] matrix = new int[r][c];
int row = nums.length, col = nums[0].length;
if (row*col != r*c) return nums;
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
int k = c*i+j;
matrix[i][j] = nums[k/col][k%col];
}
}
return matrix;
}
这涉及到矩阵转置的知识,懵懵懂懂一知半解,加油^_^