追赶法求解三对角方程组

1. 来源和背景

对于一个(主)三对角方程组,我们常用“追赶法”来进行求解. 而三对角方程组常常出现于微分方程的数值求解,例如热传导方程的边值问题

{y′′(x)=f(x,y,y), axby(a)=η1, y(b)=η2

f(x,y,y) 是一个线性函数时,对该边值问题的数值解转化为一个典型的三对角方程组求解.

“追赶法”目前比较可靠的来源是下面的文章:
Thomas, L.H., Elliptic Problems in Linear Differential Equations over a Network. Watson Science Computer Laboratory Report, 1949.
其中的一个依据是,在国外的文章和教材中,“追赶法”被称为“Thomas算法”.


2. 追赶法的基本原理

追赶法的基本原理是矩阵的LU分解,即将矩阵 A 分解为

A=LU

其中, L 为一个对角线上元素为1的下三角矩阵, U 为一个上三角矩阵. 容易验证,一个三对角矩阵作LU分解以后,得到一个下二对角矩阵与一个上二对角矩阵的乘积,即
A=a11a21a12a22a32a23a33a34an1,n2an1,n1an,n1an1,nan1,n

L=1211321n1,n21n,n11

U=u11u12u22u23u33u34un1,n1un1,nun1,n

三对角矩阵 A 的LU分解计算过程如下:

for i = 2 to n
    A(i,i-1) = A(i,i-1)/A(i-1,i-1);
    A(i,i) = A(i,i) - A(i-1,i) * A(i,i-1);
end

在计算过程中,将下三角矩阵L和上三角矩阵 U 的值保存在原矩阵A中. 计算结束以后,矩阵 A 中的元素为

u1121u12u2232u23u33u34n1,n2un1,n1n,n1un1,nun1,n

注: 三对角矩阵 A 做LU分解以后,严格上三角部分的元素没有发生变化,即上三角矩阵U中的元素

ui,i+1=ai,i+1, i=1,2,,n1


3. 追赶法求解三对角方程组

使用LU分解的求解线性方程组时,不需要存储下三角矩阵,而上三角矩阵将被用于回代求解.

3.1 “追”的过程:分解

对于 n 阶的三对角方程组

Ax=b

我们先用LU分解得到

Ux=y

注: Ax=LUx=b ,得

Ux=L1b

y=L1b ,即得到方程组 Ux=y .

计算过程如下:

for i = 2 to n
    A(i,i-1) = A(i,i-1)/A(i-1,i-1);
    A(i,i) = A(i,i) - A(i-1,i) * A(i,i-1);
    b(i) = b(i) - b(i-1) * A(i,i-1);
end

循环里面的前两行与LU分解完全相同,第三行负责对常数项做相应的变换. 在计算过程中,上三角矩阵 U 的值保存在原矩阵A中,变换后的常数 y=L1b 保存在 b 中.

3.2 “赶”的过程:回代

接着,我们用回代法求解上三角形方程组. 从三对角矩阵得到的上三角形方程组如下:

u11u12u22u23u33u34un1,n1un1,nun1,nx1x2xn1xn=y1y2yn1yn

注意在前面的计算过程中,我们将上三角矩阵 U 保存在A中,常数项 y 保存在b中. 因此,我们得到如下的回代过程:

x(n) = b(n) / A(i,i); 
for i = n-1 to 1
    x(i) = (b(i) - A(i,i+1) * x(i+1)) / A(i,i);
end

4. 实用的程序代码

在三对角矩阵中,三对角线以外的元素均为 0 ,为了提高存储的效率,我们只需存储三对角线上的元素即可. 因此,对于前面的矩阵A,我们只存储三个向量:

d=[A(1,1),A(2,2),...,A(n,n)];
u=[A(1,2),A(2,3),...,A(n-1,n)];
l=[A(2,1),A(3,2),...,A(n,n-1)];

这三个向量分别为矩阵 A <script type="math/tex" id="MathJax-Element-38">A</script>三条对角线上的元素. 假定常数向量为

b=[b(1),b(2),...,b(n)];

则实用的追赶法(亦称为“Thomas算法”)求解三对角方程组的过程如下:

% 追
for i = 2 to n
    l(i-1) = l(i-1)/d(i-1);
    d(i,i) = d(i,i) - u(i-1) * l(i-1);
    b(i) = b(i) - b(i-1) * l(i-1);
end
% 赶
x(n) = b(n) / d(i); 
for i = n-1 to 1
    x(i) = (b(i) - u(i) * x(i+1)) / d(i);
end
可以使用追赶法(也称托马斯算法)来求解对角方程组。在MATLAB中,可以使用“tridiag”函数来实现此算法。具体步骤如下: 1. 将对角方程组表示为以下形式:Ax = d,其中A是一个三对角矩阵,d是一个列向量,x是要求解的未知向量。 2. 对于三对角矩阵A,将其拆分为个向量:a、b和c。向量a和c分别表示矩阵A的下对角线和上对角线,向量b表示矩阵A的主对角线。 3. 对向量a、b和c进行追赶法求解。具体来说,首先需要进行一次前向追赶,然后再进行一次后向追赶。在前向追赶中,需要求解一个新的向量y,使得Ly = d,其中L是一个下角矩阵。在后向追赶中,需要求解向量x,使得Ux = y,其中U是一个上角矩阵。 4. 将求解得到的向量x返回作为结果。 下面是一个MATLAB代码示例: ```matlab function x = tridiag(a,b,c,d) % Tridiagonal matrix algorithm (Thomas algorithm) % Inputs: a, b, c - the three diagonals of the matrix A % d - the right-hand side vector % Output: x - the solution vector % Forward elimination (L*y = d) n = length(d); y = zeros(n,1); for i = 2:n w = a(i) / b(i-1); b(i) = b(i) - w*c(i-1); d(i) = d(i) - w*d(i-1); end % Backward substitution (U*x = y) y(n) = d(n) / b(n); for i = n-1:-1:1 y(i) = (d(i) - c(i)*y(i+1)) / b(i); end x = y; end ``` 使用方法: 假设有一个对角方程组Ax=d,其中A是一个3×3的三对角矩阵,d是一个长度为3的列向量。可以使用以下代码来求解未知向量x: ```matlab a = [0, 2, 1]; b = [3, 2, 1]; c = [1, 2, 0]; d = [7; 4; 1]; x = tridiag(a, b, c, d); ``` 其中,向量a、b和c分别对应矩阵A的下对角线、主对角线和上对角线,向量d是方程组的右侧向量。函数“tridiag”将返回向量x,即方程组的解。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值