群同构定理

“群同态基本定理”是群理论中的一个非常重要的定理。在此基础上,我们可以研究群同构性质,得到“群同构定理”。我们先介绍群同态基本定理,然后给出群同构三大定理及其证明。

群同态基本定理:
G,H 都是群,它们之间有一个映射 f:GH 是满同态,令 N f 的核。于是 G/N H 同构,记为 G/NH

证明:
现我们已经知道 f:GH 是一个满同态,并且 π:GG/N 是一个典型的满同态。定义映射 f¯:G/NH f¯(aN)=f(a) 。 我们先验证 f¯ 是良定的,再证明 f¯ 是同构即可。
baN ,存在一个 nN 使得 b=an ,并且 f(b)=f(an)=f(a)f(n)=f(a)e=f(a) , 因此, f 对陪集的每一个元素都有相同的作用,是良定的。 由于f¯(aN)=f(a),因而 f¯ 也是良定的。
再证同态:

f¯(aNbN)=f¯(abN)=f(ab)=f(a)f(b)=f¯(aN)f¯(bN)

再证单同态:
f¯(aN)=f¯(bN)f(a)=f(b)e=f1(a)f(b)=f(a1)f(b)=f(a1b)

a1bNaN=bN

再证满同态:对任意的 bH ,由 f 是满同态可知,存在 aG 使得 f(a)=b 。由 f¯ 的定义可知 aN¯=f(a)=b , 其中 aNG/N 。故 f¯ 是一个满同态。
综上, f¯ 是一个同构,即有 G/NH


接下来,我们介绍群同构三大定理:

第一群同构定理:
如果 f:GH 是一个群同态,那么 f 诱导出一个同构 G/ker(f)im(f)
证明:
与群同态基本定理的证明类似,此处略。


第二群同构定理:
如果 K,N 都是群 G 的子群, 并且 N G 的正规子群,那么就有 K/(NK)NK/N
证明:
NK=NK KNK 可知,映射 f:KNK/N 是一个同态,并且核为 KN 。由第一同构定理,我们得到一个同构 f¯:K/KNim(f)NK 。而 NK/N 中元素的形式为 nkN ,其中 nN,kK 。由 NG 可知, 存在 n1N 使得 nk=kn1 。从而有 nkN=kn1N=kN=f(k) ,故 NKim(f) 。因此,我们得到 im(f)=NK/N ,定理得证。


第三群同构定理:
如果 H,K 都是群 G 的正规子群且 K H 的子群,那么 H/K G/K 的正规子群,并且 (G/K)/(H/K)G/H
证明:
由定义我们很容易可以证得 H/K G/K 的正规子群,因此在这儿就不再赘述。由于 1G:GG 是恒等映射,并且 1G(K)<H ,因此我们得到一个满同态 f:G/KG/H ,其中 f(aK)=aH
并且 h=f(aK) 当且仅当 aH ,即 ker(f)={aK|aH}=H/K 。由第一同构定理就可以得出结论。
(注:由于 H/K G/K 的正规子群,那么我们就有 π:G/K(G/K)/(H/K) 是一个典型的满同构。)


从上面的证明过程我们可以发现,群同构定理的关键是群同态基本定理。我们在证明的时候,首先找到一个满同态映射 fGim(f) ,然后再找到 ker(f) ,显然 ker(f)G ,最后由 f 诱导一个映射 f¯,并且证明这个映射是同构的就可以了。这样,整个证明就变的非常的简单了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值