“群同态基本定理”是群理论中的一个非常重要的定理。在此基础上,我们可以研究群同构性质,得到“群同构定理”。我们先介绍群同态基本定理,然后给出群同构三大定理及其证明。
群同态基本定理:
令 G,H 都是群,它们之间有一个映射 f:G→H 是满同态,令 N 是f 的核。于是 G/N 与 H 同构,记为G/N≅H 。证明:
现我们已经知道 f:G→H 是一个满同态,并且 π:G→G/N 是一个典型的满同态。定义映射 f¯:G/N→H 为 f¯(aN)=f(a) 。 我们先验证 f¯ 是良定的,再证明 f¯ 是同构即可。
对 b∈aN ,存在一个 n∈N 使得 b=an ,并且 f(b)=f(an)=f(a)f(n)=f(a)e=f(a) , 因此, f 对陪集的每一个元素都有相同的作用,是良定的。 由于f¯(aN)=f(a) ,因而 f¯ 也是良定的。
再证同态:
f¯(aN⋅bN)=f¯(abN)=f(ab)=f(a)f(b)=f¯(aN)f¯(bN)
再证单同态:
f¯(aN)=f¯(bN)⇒f(a)=f(b)⇒e=f−1(a)f(b)=f(a−1)f(b)=f(a−1b)
⇒a−1b∈N⇒aN=bN
再证满同态:对任意的 b∈H ,由 f 是满同态可知,存在a∈G 使得 f(a)=b 。由 f¯ 的定义可知 aN¯=f(a)=b , 其中 aN∈G/N 。故 f¯ 是一个满同态。
综上, f¯ 是一个同构,即有 G/N≅H
接下来,我们介绍群同构三大定理:
第一群同构定理:
如果 f:G→H 是一个群同态,那么 f 诱导出一个同构G/ker(f)≅im(f) 。
证明:
与群同态基本定理的证明类似,此处略。
第二群同构定理:
如果 K,N 都是群 G 的子群, 并且N 是 G 的正规子群,那么就有K/(N∩K)≅NK/N 。
证明:
由 NK=N∨K 和 K⊂NK 可知,映射 f:K→NK/N 是一个同态,并且核为 K∩N 。由第一同构定理,我们得到一个同构 f¯:K/K∩N−→∼im(f)⊆NK 。而 NK/N 中元素的形式为 nkN ,其中 n∈N,k∈K 。由 N⊲G 可知, 存在 n1∈N 使得 nk=kn1 。从而有 nkN=kn1N=kN=f(k) ,故 NK⊆im(f) 。因此,我们得到 im(f)=NK/N ,定理得证。
第三群同构定理:
如果 H,K 都是群 G 的正规子群且K 是 H 的子群,那么H/K 是 G/K 的正规子群,并且 (G/K)/(H/K)≅G/H 。
证明:
由定义我们很容易可以证得 H/K 是 G/K 的正规子群,因此在这儿就不再赘述。由于 1G:G→G 是恒等映射,并且 1G(K)<H ,因此我们得到一个满同态 f:G/K→G/H ,其中 f(aK)=aH 。
并且 h=f(aK) 当且仅当 a∈H ,即 ker(f)={aK|a∈H}=H/K 。由第一同构定理就可以得出结论。
(注:由于 H/K 是 G/K 的正规子群,那么我们就有 π:G/K→(G/K)/(H/K) 是一个典型的满同构。)
从上面的证明过程我们可以发现,群同构定理的关键是群同态基本定理。我们在证明的时候,首先找到一个满同态映射
f:G→im(f)
,然后再找到
ker(f)
,显然
ker(f)⊲G
,最后由
f
诱导一个映射