KG
jack_201316888
这个作者很懒,什么都没留下…
展开
-
知识图谱入门 (二) 知识表示与知识建模
知识表示历史知识的概念知识表示就是对知识的一种描述,或者说是对知识的一组约定,一种计算机可以接受的用于描述知识的数据结构。它是机器通往智能的基础,使得机器可以像人一样运用知识。知识具有相对正确性、不确定性、可表示性以及可利用性的特点。根据不同划分标准,知识可以分为不同的类别。例如按照作用范围分类,可分为常识性知识和领域性知识。按作用及表示分类为事实性知识、过程性知识、控制知识。按确定性分类有确定性知识,不确定性知识。按结构及表现形式可分为逻辑性知识和形象性知识。早期的知识表示方法一阶谓词转载 2020-09-07 17:54:03 · 608 阅读 · 0 评论 -
知识图谱-KG
https://blog.csdn.net/u010626937/article/details/88106081?utm_medium=distribute.pc_aggpage_search_result.none-task-blog-2~all~first_rank_v2~rank_v25-20-88106081.nonecase&utm_term=%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E4%B8%93%E5%AE%B6知识图谱技术是人工智能技术的重要组转载 2020-09-07 17:42:15 · 1056 阅读 · 0 评论 -
图数据库
https://www.cnblogs.com/mantoudev/p/10414495.html社交、电商、金融、零售、物联网等行业的快速发展,现实社会织起了了一张庞大而复杂的关系网,传统数据库很难处理关系运算。大数据行业需要处理的数据之间的关系随数据量呈几何级数增长,亟需一种支持海量复杂数据关系运算的数据库,图数据库应运而生世界上很多著名的公司都在使用图数据库。比如:社交领域:Facebook, Twitter,Linkedin用它来管理社交关系,实现好友推荐 零售领域:eBay,沃尔玛使转载 2020-09-07 14:48:47 · 174 阅读 · 0 评论 -
NLP + KG resource
【人工智能头条导读】作者一年前整理了这份关于 NLP 与知识图谱的参考资源,涵盖内容与形式也是非常丰富,接下来人工智能头条还会继续努力,分享更多更好的新资源给大家,也期待能与大家多多交流,一起成长。NLP参考资源自然语言处理(Natural Language Processing)是深度学习的主要应用领域之一。▌教程CS224d: Deep Learning for Natural Language Processing http://cs224d.stanford.edu/ CS2.原创 2020-09-01 12:08:26 · 676 阅读 · 0 评论 -
自然语言处理NLP + 知识图谱
黄金搭档:自然语言处理NLP + 知识图谱金融行业因其与数据的高度相关性,成为人工智能最先应用的行业之一,而自然语言处理(NLP)与知识图谱作为人工智能技术的重要研究方向与组成部分,正在快速进入金融领域,并日益成为智能金融的基石。一般的金融科技公司只会集中在其中的某些业务方向,只要能深入掌握两到三种能力,就能具有相当的竞争力。在这些业务场景中,自然语言处理(NLP)和知识图谱技术往往需要共同应用,才能发挥出最大的效能。同时,一种核心能力可以在多个智能金融应用场景中得到应用,这些应用场景包括:智能投研转载 2020-09-01 11:36:56 · 6705 阅读 · 1 评论 -
KG-知识图谱
https://www.cnblogs.com/huangyc/p/10043749.html1. 通俗易懂解释知识图谱(Knowledge Graph) 完整机器学习实现代码GitHub欢迎转载,转载请注明出处https://www.cnblogs.com/huangyc/p/10043749.html欢迎沟通交流: 339408769@qq.com0. 目录1. 前言 2. 知识图谱定义 3. 数据类型和存储方式 4. 知识图谱的架构 4.1 逻辑架构 4.2 技术架转载 2020-09-01 09:15:38 · 1503 阅读 · 0 评论 -
什么是知识图谱
https://blog.csdn.net/blueorris/article/details/96020770本文参考了Mayank Kejriwal的新著《Domain-Specific Knowledge Graph Construction》(2019年) 最近几年,knowledge graph(KG)作为AI(人工智能)的一个主要领域活跃起来。图(graph)经常出现在AI的最新论文当中。由于大数据时代的到来,我们很需要让计算机高效地“理解”并分析这些数据。 ...转载 2020-08-31 11:58:06 · 232 阅读 · 0 评论