使用位运算替代模运算

昨天的分析HashMap原理的文章里面提到,使用位运算替代取模运算效率高,但位运算只能在特定场景下才能替代%运算。


正常情况下:
````
a % b = a - (a / b)*b

````


但如果b的值为2的n次方的时候(n为自然数),这时候就可以用位运算来替代模运算,
转化如下:

````
a % b = a & (b-1)
````


2的n次方的二进制如下:

````
`
0001 2^0 1
0010 2^1 2
0100 2^2 4
1000 2^3 8

````


从上面能看到左移一位是放大2倍,右移一位是缩小2倍


分别减一后的二进制

````

0000 2^0-1 0
0001 2^1-1 1
0011 2^2-1 3
0111 2^3-1 7

````


举例

我们算下11%8的模,

11的二进制是:1011

代入上面的公式:

````
11 % 8 = 11 & (8-1)
````


7的二进制: 0111


二者做&(与)运算 ,回忆下运算规则:
````
& 与。 全1为1, 有0为0。  任何数与0与都等于0。  
| 或。 有1为1, 全0为0。  任何数与0或都等于原值。
~ 非。 逐位取反
^ 异或。 相同为0,相异为1。 任何数与0异或都等于原值。
````


结果:

1011 & 0111 = 0011

转化成10进制后=3

所以11%8=3


这种方法只是适合于求一个数除以二的N次冥才正确,求模的过程,就是2^n-1的中1的个数就是n的值,再与a做&运算,得出来的低位就是我们期望的余数。
[b][color=green][size=large] 有什么问题可以扫码关注微信公众号:我是攻城师(woshigcs),在后台留言咨询。 技术债不能欠,健康债更不能欠, 求道之路,与君同行。 [/size][/color][/b] [img]http://dl2.iteye.com/upload/attachment/0104/9948/3214000f-5633-3c17-a3d7-83ebda9aebff.jpg[/img]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值