晴天彩虹雨
怀瑾握瑜
展开
-
未来 AI 发展趋势与挑战(AGI、数据安全、监管政策)
从 Narrow AI 到 AGI,从智能问答到自主 Agent,我们站在 AI 历史的关键拐点。而未来的竞争,不仅是算法能力的比拼,更是合规、伦理与应用生态的系统化较量。作为 AI 构建者与实践者,我们既要关注技术的创新,也需思考:如何让技术真正为人类所用,而不是相反?原创 2025-04-09 21:26:50 · 675 阅读 · 0 评论 -
实时数据 + AI 推理的应用场景 | 模型服务对接 + 实战代码 + 调度集成
将 Flink/Spark 与 AI 推理结合,可以构建:实时数据智能分析平台具备自然语言理解能力的应用数据驱动的自动化推荐系统并通过 DolphinScheduler 完善调度体系,提升可维护性与自动化水平。原创 2025-04-08 21:44:35 · 361 阅读 · 0 评论 -
结合 Flink/Spark 进行 AI 大数据处理(实时数据 + AI 推理的应用场景)
将 Flink/Spark 与 AI 推理服务结合,打造“流式+智能”的系统,是迈向智能化数仓的重要一步。在实际项目中,我们推荐:小规模场景先用 Spark + Batch + 模型 API 快速落地对实时性要求高的使用 Kafka + Flink + 模型微服务架构模型部署优先选择 vLLM / ChatGLM / DeepSeek 等国产适配良好的方案配合 DolphinScheduler 实现调度闭环与可视化平台管理。原创 2025-04-07 23:07:59 · 581 阅读 · 0 评论 -
LangChain vs LlamaIndex:构建 AI 知识库系统(文本嵌入、向量数据库)
对比项LangChainLlamaIndex学习曲线稍陡(适合工程化)简单(适合文档问答)可扩展性高:支持 Agent、多模型中:专注索引和查询国内适配性支持通义、DeepSeek 等同样支持国产嵌入模型推荐场景多轮问答、工具调用系统企业文档搜索系统。原创 2025-04-06 23:50:50 · 351 阅读 · 0 评论 -
量化与优化:如何让大模型跑得更快、更省资源?(4-bit 量化、FlashAttention、TensorRT)
在大模型的训练与推理中,计算资源与存储资源的消耗常常是令人头疼的问题。为了提升效率、降低成本,我们需要对大模型进行量化与优化。本文将详细介绍 4-bit 量化、FlashAttention 和 TensorRT 的使用方法,以及如何在实际部署中结合这些技术进行优化。原创 2025-04-03 07:31:38 · 406 阅读 · 0 评论 -
如何部署私有 AI 大模型?(本地 GPU vs 云计算 vs 端侧 AI)
随着 AI 大模型的快速发展,越来越多的企业和个人希望将大模型部署在私有环境中,以确保数据安全、提升推理效率以及降低成本。本文将详细介绍如何在本地 GPU、云计算以及端侧 AI 环境中部署私有 AI 大模型,并给出具体实战操作指南。原创 2025-04-01 23:13:07 · 660 阅读 · 0 评论 -
如何构建一个 AI 驱动的数据分析系统
在现代数据分析中,将 AI 引入数据分析系统中可以极大提升效率和自动化程度。本文将从架构设计、工具选择、实现步骤等多个方面进行详细说明,帮助你构建一个 AI 驱动的数据分析系统。原创 2025-03-31 10:41:35 · 291 阅读 · 0 评论 -
AI + 数据:如何结合 AI 提高数据分析与查询能力?(SQL 生成、数据洞察、知识库问答)
在现代数据分析与应用中,AI 与大数据的结合正成为最具潜力的方向之一。AI 能够通过自动化 SQL 生成、数据洞察分析与知识库问答,大幅提升数据分析的效率与精准性。原创 2025-03-31 10:37:23 · 536 阅读 · 0 评论 -
AI 工作流自动化:从 RPA 到智能体编排(AI 任务拆解、工作流管理)
AI 在自动化工作流中正扮演着越来越重要的角色,从传统的 RPA(机器人流程自动化)到更高级的 AI Agent 编排,企业可以利用 AI 来优化任务拆解、决策制定以及复杂流程管理。本文将探讨 AI 工作流自动化的关键技术、工具以及国内外的应用案例。原创 2025-03-28 11:37:46 · 643 阅读 · 0 评论 -
AI Agent 如何进行工具调用?(检索增强、代码执行、数据库访问)
AI Agent 的强大能力不仅仅体现在自然语言处理上,还可以通过调用外部工具来增强自身的功能,如检索增强(RAG)、代码执行、数据库访问等。本篇文章将详细介绍如何让 AI Agent 高效调用这些工具。原创 2025-03-27 15:19:16 · 489 阅读 · 0 评论 -
构建你的第一个 AI Agent(Python + LangChain + LLM)
AI Agent 是指能够自主执行任务并与环境交互的智能体。与传统的 Chatbot 不同,AI Agent 具备更强的推理能力、工具使用能力,并且能够结合多个外部数据源(如数据库、API、搜索引擎等)来完成复杂任务。LangChain 是一个强大的框架,可用于构建 AI Agent,使其能够整合 LLM 并执行任务。通过本篇文章,我们使用 LangChain 和 LLM 搭建了一个 AI Agent,并集成了搜索、计算器和数据库查询等工具。同时,我们优化了 Prompt 设计,提高了模型的推理能力。原创 2025-03-26 17:17:54 · 388 阅读 · 0 评论 -
AI Agent 是什么?从 Chatbot 到自动化 Agent(LangChain、AutoGPT、BabyAGI)
AI Agent 已经从 Chatbot 发展到自主智能体,如 LangChain、AutoGPT 和 BabyAGI,使得 AI 能够自动执行任务,提高生产力。未来,AI Agent 可能会在更多领域,如自动化研究、智能运维、AI 机器人等方面发挥更大作用。原创 2025-03-25 22:30:03 · 447 阅读 · 0 评论 -
Prompt Engineering:如何写出更高效的提示词?
Prompt Engineering(提示词工程)是优化输入给 AI 模型的文本,以提高模型的输出质量和可控性。良好的 Prompt 设计可以显著提高大模型在文本生成、代码编写、逻辑推理等任务中的表现。原创 2025-03-25 00:29:06 · 470 阅读 · 0 评论 -
多模态 AI 解析:大模型如何理解图像和视频(Vision Transformer、Stable Diffusion)
等任务。原创 2025-03-24 13:00:00 · 302 阅读 · 0 评论 -
AI 在不同领域的应用案例(文本摘要、代码生成、法律 AI、医疗 AI)
新闻文章摘要:AI 可以自动生成新闻内容的摘要,帮助用户快速了解文章核心内容。法律文档摘要:自动提取法律条款和判例要点,辅助律师和法官高效工作。学术论文摘要:帮助研究人员快速掌握文献核心观点。原创 2025-03-24 07:00:00 · 298 阅读 · 0 评论 -
微调大模型:LoRA、PEFT、RLHF 简介
LoRA 是一种低秩适配方法,旨在减少大模型微调时的参数更新量。LoRA 通过冻结原始模型权重,仅在特定层(如 Transformer 的注意力层)插入低秩矩阵进行训练,从而降低计算成本。PEFT 是一组参数高效微调技术,包括 LoRA、Prefix Tuning 和 Adapter。其核心思想是减少模型训练的参数数量,降低资源消耗,同时保持模型性能。RLHF 是强化学习(RL)+ 人类反馈(HF)结合的一种微调方法,主要用于提升 LLM 生成结果的质量。方法优点适用场景LoRA。原创 2025-03-23 21:40:22 · 314 阅读 · 0 评论 -
大模型的应用与微调:如何调用 LLM?从 OpenAI API 到本地部署
本篇文章介绍了如何调用 OpenAI、DeepSeek、Manus、通义千问等大模型 API,并探讨了 LLM 本地部署的方法。在实际应用中,可以根据需求选择云端 API 或本地化部署方案,以满足不同的计算需求和隐私要求。下一篇:大模型微调与 RAG 技术(LoRA、QLoRA、向量数据库)原创 2025-03-20 17:55:55 · 522 阅读 · 0 评论 -
搭建自己的 AI 实验环境(本地 GPU、国内云计算平台、Colab)
本地 GPU 适合深度学习开发者,云计算平台则提供更灵活的计算资源。根据自身需求选择合适的 AI 实验环境,可以提高开发效率,降低硬件成本。在 AI 领域,实验环境的搭建至关重要。Google Colab 是一个基于云的 Jupyter Notebook 环境,支持免费 GPU 计算资源。提供 AI Notebook 环境,支持 TensorFlow、PyTorch。提供自动化 AI 开发环境,支持 Notebook 及 AutoML。提供免费 GPU 计算资源,支持 PaddlePaddle 深度学习。原创 2025-03-19 14:09:13 · 370 阅读 · 0 评论 -
如何选择合适的 AI 模型?(开源 vs 商业 API,应用场景分析)
在 AI 迅猛发展的今天,各类 AI 模型层出不穷,从开源模型(如 DeepSeek、Llama、Qwen)到商业 API(如 OpenAI 的 ChatGPT、Anthropic 的 Claude、Google Gemini),每种方案都有其优势与适用场景。在 AI 快速发展的时代,选对 AI 模型,才能更高效地落地智能应用,为企业创造真正的价值。:DeepSeek、Llama 3、Qwen 等正在快速发展,国内开源生态将持续提升。,如医学、法律等专业领域的数据训练,选择开源 AI 模型是更好的方案。原创 2025-03-19 13:44:38 · 451 阅读 · 0 评论 -
国内外主流 AI 大模型盘点(DeepSeek、Manus、通义千问、ChatGPT、Claude、Gemini 等)
近年来,人工智能领域的大语言模型(LLM)迅猛发展,国内外科技公司纷纷推出了具有竞争力的 AI 模型。本篇文章将盘点当前主流的大模型,包括 OpenAI 的 ChatGPT、Anthropic 的 Claude、Google 的 Gemini,以及国内的 DeepSeek、通义千问(Qwen)、Manus 等,并探讨它们的核心技术、适用场景及未来发展趋势。全球 AI 大模型的竞争日益激烈,国内厂商在开源生态、行业适配等方面持续创新。具备强大的自然语言理解和生成能力,支持代码编写、文本创作、多模态理解等。原创 2025-03-17 00:05:36 · 1896 阅读 · 0 评论 -
大语言模型(LLM)解析:从 GPT 到 DeepSeek(Transformer 结构、主流 LLM 的对比)
大语言模型(LLM, Large Language Model)近年来发展迅速,从早期的基于统计和规则的语言处理模型,到深度学习时代的 Transformer 结构,再到目前各国科技企业推出的大规模预训练模型,如 OpenAI 的 GPT 系列、国内的 DeepSeek、Manus、通义千问等。:随着计算资源的增加,Transformer 结构可以扩展到更大规模的模型,如 GPT-4、DeepSeek-V2 等。:针对特定任务(如对话、编程、翻译等)进行监督微调,提高模型在特定应用场景下的表现。原创 2025-03-16 22:14:59 · 383 阅读 · 0 评论 -
AI 是什么?核心概念与发展历程(人工智能的发展、基本概念、机器学习 vs 深度学习)
人工智能经历了数十年的发展,从符号主义 AI 到机器学习、深度学习,再到大模型时代,每一次技术进步都推动了 AI 在现实世界的应用。随着国内 AI 领域的快速发展(如 DeepSeek、Manus、通义千问等大模型的崛起),AI 正在改变人们的工作和生活方式。人工智能(Artificial Intelligence,AI)正以前所未有的速度改变世界,从语音助手到自动驾驶,从医疗诊断到金融风控,AI 正在渗透到各个行业。由于计算能力和数据不足,AI 研究陷入瓶颈,资金支持减少,AI 发展停滞。原创 2025-03-16 20:41:47 · 2518 阅读 · 0 评论