微调大模型:LoRA、PEFT、RLHF 简介

1. 引言

大语言模型(LLM)如 DeepSeek、ChatGPT 和 Claude 具有强大的文本生成能力,但直接训练一个大模型成本高昂,且需要大量数据。微调(Fine-tuning)是使大模型适应特定任务或领域的有效方式,其中 LoRA(Low-Rank Adaptation)、PEFT(Parameter-Efficient Fine-Tuning)和 RLHF(Reinforcement Learning with Human Feedback) 是三种常见的方法。

本篇文章将介绍这三种技术的核心概念、适用场景以及实际应用案例。


2. LoRA(低秩适配)

2.1 LoRA 概述

LoRA 是一种 低秩适配 方法,旨在减少大模型微调时的参数更新量。LoRA 通过 冻结原始模型权重,仅在特定层(如 Transformer 的注意力层)插入低秩矩阵进行训练,从而降低计算成本。

2.2 LoRA 主要特点

  • 减少参数更新:相比全参数微调,LoRA 仅训练少量额外参数,降低显存占用。

  • 适用于大模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴天彩虹雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值