欧拉定理

内容
数论中, 欧拉定理,(也称 费马 -欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为 正整数,且n,a 互质,则:
a^{\varphi(n)}\equiv1(\textrm{mod} \, n)

证明

首先证明下面这个命题:
对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是不大于n且与n互素的数,即n的一个化简剩余系(或称简系、缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} 。
则S = Zn
1) 由于a,n互质,xi也与n互质,则a*xi也一定与n互质,因此
任意xi,a*xi(mod n) 必然是Zn的一个元素 。
2) 对于Zn中两个元素xi和xj,如果xi ≠ xj
则a*xi(mod n) ≠ a*xj(mod n),这个由a、n互质和消去律可以得出。
所以,很明显,S=Zn
既然这样,那么
(a*x1 × a*x2×...×a*xφ(n))(mod n)
= (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)
= (x1 × x2 × ... × xφ(n))(mod n)
考虑上面等式左边和右边
左边等于([a^φ(n)] *(x1 × x2 × ... × xφ(n))) (mod n)
右边等于x1 × x2 × ... × xφ(n))(mod n)
而x1 × x2 × ... × xφ(n)(mod n)和n互质
根据消去律,可以从等式两边约去,就得到:
a^φ(n) ≡ 1 (mod n)
推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n)
a是不能被 质数p 整除的正整数,则有a^(p-1) ≡ 1 (mod p)
证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。推论:对于任意正整数a,有a^p ≡ a (mod p),因为a能被p整除时结论显然成立。
附上求欧拉函数的代码:
int phi(int n)
{
    int res=1;
    for(int i=2;i*i<=n;i++)
        if(n%i==0)
        {
            n/=i;res*=i-1;
            while(n%i==0)
            {
                n/=i;res*=i;
            }
        }
    if(n>1) res*=n-1;
    return res;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值