欧拉定理 证明及推论

5 篇文章 0 订阅
4 篇文章 0 订阅

欧拉定理:

    若正整数 a , n 互质,则  aφ(n)≡1(mod n)   其中 φ(n) 是欧拉函数(1~n) 与 n 互质的数。

证明如下:

        不妨设X1,X2 ...... Xφn1~nn互质的数。

  首先我们先来考虑一些数:aX1,aX2 ...... aXφn

  这些数有如下两个性质

(1)任意两个数模n余数一定不同:(反证)

     若存在aX1≡aX2(mod n),则 n |( aX1 - aX2 )

     而a,n互质且(X1 - X2)< n,所以n不可能整除( aX1 - aX2 ),也就是说不存在aX1≡aX2(mod n)

     归纳法:对于任意的与n互质的Xi均成立。故得证。

  那么因为有 φn 个这样的数,Xi mod n(i=1~φn)所以就有 φn 个不同的余数,并且都是模数自然是(0~n-1)。

(2)对于任意的aXi(mod n)都与n互质。

     这不难想,因为an互质这是欧拉函数的条件,Xi是(1~n)与n互质的数的集合中的元素。

     所以如果 a*Xi 做为分子,n做为分母,那么

     他们构成的显然就是一个最简分数,也就是aXi和n互质。

     接下来就可以用欧几里得算法:

     因为:gcd(aXi,n)==1

     所以:gcd(aXi,n)== gcd(n,aXi%n)== 1

切入正题

这样,我们把上面两个性质结合一下来说,aX1(mod n),aX2(mod n) ...... aXφn(mod n)构成了一个集合(性质1证明了所有元素的互异性),并且这些数是1~n与n互质的所有数构成的集合(性质1已说明)。

这样,我们巧妙的发现了,集合{ aX1(mod n),aX2(mod n) ...... aXφn(mod n)}

经过一定的排序后和集合{ X1,X2 ...... Xφn }

完全 一 一 对应。

那么:aX1(mod n)* aX2(mod n)*  ...... * aXφn(mod n)= X1 * X2 * ...... * Xφn   

因此:我们可以写出以下式子:

aX1 * aX2 *  ...... * aXφn ≡  X1 * X2 * ...... * Xφn  (mod n),即:(aφn -1)X1 * X2 * ...... * Xφn ≡ 0 (mod n)

又因为X1 * X2 * ...... * Xφnn互质,所以, (aφn -1)| n,那么aφn ≡ 1(mod n)

欧拉定理得证。

 

欧拉定理的推论:

  若正整数a,n互质,那么对于任意正整数b,有ab≡ab mod φ(n)(mod n)

证明如下:(类似费马小定理的证明)

  把目标式做一简单变形:ab - b mod φ(n)* ab mod φ(n)≡ ab mod φ(n)(mod n),

       所以接下来只需要证明 ab - b mod φ(n)≡ 1 (mod n)

       又因为:( b - b mod φ(n))| φ(n)

       不妨设:( b - b mod φ(n))= q*φ(n)(q为自然数)

       则有aq*φ(n)== (aq)φ(n)

       因为a,n互质,那么(aq)与n也互质,

       那么就转换到了欧拉定理(aq)φ(n)≡ 1 (mod n),成立。

       所以我们这个推论成立。

不过,这个推论能干嘛呢???

这个推论可以帮助我们在求幂运算的时候缩小数据范围和计算次数

具体的说:在求乘方运算时,可以先把底数对mod取模,再把指数对b mod φ(n)取模。

特别的,如果a,mod不互质,且b>φ(n)时,ab ≡ ab mod φ(n)+ φ(n)(mod n)

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值