当我们训练模型时时长会遇到过拟合和欠拟合的现象:
欠拟合:相对于我们任务来说我们的模型过于简单;
过拟合:相对于模型来说任务过于简单(模型在训练集上有很好的结果,在测试集上效果比较差);
欠拟合其实就是模型选择的问题,很少讨论这种情况(选个复杂的模型呗)。
解决过拟合的两个常用方法(除了模型过于复杂外):
1,数据太少,增加数据(一个没有见过歪果仁的中国人,第一次看NBA,很懵逼,看谁都一样,多看就好喽);
2,加入偏差,也即是正则化(在损失函数后面加入L1、L2或其他正则项);
喝牛奶是助睡眠,起夜的次数也可能多哦