过拟合,欠拟合问题

当我们训练模型时时长会遇到过拟合欠拟合的现象:

欠拟合:相对于我们任务来说我们的模型过于简单;

过拟合:相对于模型来说任务过于简单(模型在训练集上有很好的结果,在测试集上效果比较差);

 

欠拟合其实就是模型选择的问题,很少讨论这种情况(选个复杂的模型呗)。

 

解决过拟合的两个常用方法(除了模型过于复杂外):

1,数据太少,增加数据(一个没有见过歪果仁的中国人,第一次看NBA,很懵逼,看谁都一样,多看就好喽);

2,加入偏差,也即是正则化(在损失函数后面加入L1、L2或其他正则项);

 

 

 

 

 

喝牛奶是助睡眠,起夜的次数也可能多哦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值