前言
CUDA/ cuDNN /cudatoolkit 三者的关系与区别
- CUDA 是整体平台和架构,支持NVIDIA GPU的并行计算。
- cuDNN 是专门为深度学习优化的库,构建在CUDA之上,为卷积操作等深度学习相关任务提供加速。
- cudatoolkit 则是CUDA的工具包,包含了开发和运行CUDA程序所需的库和工具,通常与CUDA SDK一起安装。
总结
- CUDA 是基础平台,提供了并行计算能力。
- cuDNN 是深度学习的特定优化库,构建在CUDA之上。
- cudatoolkit 是安装CUDA环境所需的工具包,确保CUDA程序能够正常编译和运行。
1.查看自己已经安装的cuda toolkit版本
nvcc -V
2.查看自己的当前的nvida显卡最高支持的CUDA版本
使用win+R界面,输入cmd,打开命令行窗口输入 nvidia-smi
这里我的显示最高支持的版本是CUDA 12.4
3.查看自己显卡兼容的CUDA版本
打开nvidia网址,https://developer.nvidia.com/cuda-gpus
这是我的显卡,然后点击它,自动会跳转到https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4070-family/ 这里
我的显卡架构
然后参照下面的图,这里是参考大神的文章https://zhuanlan.zhihu.com/p/633473214
支持我的就是Ada Lovelace对应的绿色的部分,即11.8 到 12.2
4.根据pytorch版本选择对应的CUDA版本
去pytoch官网Previous PyTorch Versions | PyTorch
我需要的版本是 11.8-12.4都可以,因为我的pytorch是2.4.0
5.安装
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
6.安装cuda toolkit
进入官网CUDA Toolkit Archive | NVIDIA Developer选择对应的版本,我选择的11.8.0
点击它,按下图下载适合自己的安装包
后续
补充一下:conda比virtualenv, venv好的地方就在于可以用cudatoolkit来指定cuda的版本,相当于在虚拟环境中把CUDA也放了进来。 曾经想要在一个环境里装pytorch >=1.5.0, tensorflow == 1.13.xx,然后手动安装CUDA版本各种不兼容,最后用cudatoolkit终于成功了。