AIoT应用开发:搞定语音对话机器人=ASR+LLM+TTS

最近新入手了一台 arm 开发板,希望打造一款有温度、有情怀的陪伴式 AI 对话机器人。

大体实现思路如下:

前几篇,在板子上把LLM 大脑耳朵嘴巴装上了:

对应到设备上:

  • 耳朵 == 麦克风;
  • 大脑 == 大语言模型;
  • 嘴巴 == 扬声器;

今日分享,带大家实操:如何把三者串联起来,实现实时语音对话。

有小伙伴问:没有 arm 开发板怎么办?准备一台 Android 手机就行。

友情提醒:本文实操,请确保已在手机端准备好 Linux 环境,具体参考教程:如何在手机端部署大模型?

1. 语音识别-ASR

原打算在板子上部署语音识别模型,发现小模型效果不太好,而大模型的耗时不能忍。

故先采用云端接口跑通流程,这里选用 siliconflow 提供的免费接口。

给大家贴下调用代码:

def asr_sensevoice(file_path="output/test.mp3"):
    url = "https://api.siliconflow.cn/v1/audio/transcriptions"
    headers = {
        "accept": "application/json",
        "Authorization": "Bearer xxx"
    }
    files = {
        "file": open(file_path, "rb"),  # The key "file" should match the expected parameter name on the server
        "model": (None, "iic/SenseVoiceSmall")  # "None" is used because model is just a string, not a file
    }
    response = requests.post(url, files=files, headers=headers)
    data = response.json()
    return data["text"]

2. 智能问答-LLM

如何在手机端部署大模型?中,我们本地部署了qwen2:0.5b并接入了OneAPI,直接调用即可。

3. 语音合成-TTS

之前和大家过几款最近爆火的 TTS 项目:

EdgeTTS 使用最为简单,先接进来:

def tts_edge(text='', filename='data/audios/tts.wav'):
    communicate = edge_tts.Communicate(text=text,
        voice="zh-CN-XiaoxiaoNeural", # zh-HK-HiuGaaiNeural
        rate='+0%',
        volume= '+0%',
        pitch= '+0Hz')
    communicate.save_sync(filename)

4. 整体实现

最后,我们把 ASR + LLM + TTS 串联起来,关键流程如下:

  • 基于AIoT应用开发:给板子装上’耳朵’,实现音频录制中实现的逻辑,一旦有音频文件保存到本地,即触发对话功能;
  • 语音识别:如果识别结果开头包含关键词kwords,才会触发 LLM;
  • 智能问答:LLM 基于语音识别结果,做出文字答复;
  • 语音合成:TTS 结果保存到本地;
  • 音频播放:把保存在本地的 TTS 结果,通过蓝牙音箱播放。

贴一下完整代码:

import android
droid = android.Android()
def asr_llm_tts(filename='xx.wav', llm_list=['qwen-0.5b'], tts_path='/sdcard/audios', kwords='小爱'):
    asr_text = asr_sensevoice(filename)
    logging.info(f"ASR 识别结果:{asr_text}")
    if asr_text.startswith(kwords):
        messages = [
                {'role': 'system', 'content': sys_base_prompt},
                {'role': 'user', 'content': asr_text}
            ]
        result = unillm(llm_list, messages)
        logging.info(f"LLM 结果:{result}")
        filename = f'{tts_path}/{datetime.now().strftime("%Y%m%d_%H%M%S")}.wav'
        tts_edge(result, filename=filename)
        if os.path.exists(filename):
            tag = os.path.basename(filename).split('.')[0]
            # 查看是否有音频播放
            play_list = droid.mediaPlayList().result
            for item in play_list:
                res = droid.mediaPlayInfo(item)
                isplaying = res.result['isplaying']
                if not isplaying:
                    droid.mediaPlayClose(item)
            # 开始播放音频
            res = droid.mediaPlay(filename, tag, True)
            # 打印播放信息
            logging.info(droid.mediaPlayInfo(tag).result)
        else:
            logging.error("TTS 失败。")

值得注意的是:asr_llm_tts() 函数耗时较长,会阻塞主线程,导致无法及时从音频流中读取数据,引起下面的错误。

p = pyaudio.PyAudio()
stream = p.open()
data = stream.read(chunk)
  File "/home/aidlux/.local/lib/python3.8/site-packages/pyaudio/__init__.py", line 570, in read
    return pa.read_stream(self._stream, num_frames,
OSError: [Errno -9981] Input overflowed

这是因为 stream.read(chunk) 需要定期被调用,以清空音频输入缓冲区,如果这个调用被延迟,缓冲区就会溢出。

为了解决这个问题,有两种方法:

  • 异步处理:将 asr_llm_tts() 放在一个异步任务中执行,这样主线程可以继续处理音频流,而不会因为等待异步任务完成而阻塞。

  • 多线程处理:创建一个新的线程来处理 asr_llm_tts(),这样就不会干扰主线程的音频流处理。

import threading
threading.Thread(target=asr_llm_tts, args=(filename,)).start()

5. 效果展示

给大家展示一段日志信息:

程序正在运行,按 Ctrl+C 停止...
开始录音...
ASR 识别结果:
低音量持续,停止录音。
录音已保存为 data/audios/20240917_094434.wav
ASR 识别结果:小爱小爱,夸夸我。
LLM 结果:你好!初次见面,很高兴认识你。你的问题我可以帮忙回答。你最近的生活和工作状态如何?遇到什么问题了吗?我会尽力帮助你。
{'loaded': True, 'duration': 13344, 'looping': False, 'isplaying': True, 'tag': '20240917_094440', 'position': 0, 'url': '/sdcard/audios/20240917_094440.wav'}

最后播报的音频结果:体验地址

写在最后

至此,我们已经给开发板装上了:大脑 + 耳朵 + 嘴巴,并实现了实时语音对话,一个 AI 机器人的雏形总算捏出来了。

如果对你有帮助,欢迎点赞收藏备用。

下篇,我们将继续接入 AI 视觉能力,实现更多有意思的创意,敬请期待!


为方便大家交流,新建了一个 AI 交流群,欢迎对AIoTAI工具AI自媒体等感兴趣的小伙伴加入。

最近打造的微信机器人小爱(AI)也在群里,公众号后台「联系我」,拉你进群,交个朋友。


猴哥的文章一直秉承分享干货 真诚利他的原则,最近陆续有几篇分享免费资源的文章被CSDN下架,申诉无效,也懒得费口舌了,欢迎大家关注下方公众号,同步更新中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值