正则化

 最近听吴立德老师的深度学习课程,不断强调可以再Loss函数后面加上正则化项以优化问题最小解,于是查了一些正则化的相关资料,介绍几篇解释的通俗易懂的文章:

(1)正则化、归一化含义解析

(2)Stanford ML - Regularization 正则化

(3)流形正则化学习笔记

(4)正则化最小二乘

(5)线性代数中的正则化(regularization)

(6)正则化的具体理解

(7)机器学习中关于正则化的理解

(8)线性回归和正则化(Regularization)

(9)机器学习练习之正则化

(10)L1和L2正则化

(11)正则化和归一化的浅层理解

(12)

Coursera公开课笔记: 斯坦福大学机器学习第七课“正则化(Regularization)”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bicelove

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值