【原创】XGBoost分类器原理及应用实战

本文结合作者对xgboost原理的理解及使用xgboost做分类问题的经验,讲解xgboost在分类问题中的应用。内容主要包括xgboost原理简述、xgboost_classifier代码、xgboost使用心得和几个有深度的问题

XGBoost原理简述

xgboost并没有提出一种新的机器学习算法,而是基于现有的GBDT/lambdaMART等tree boosting算法在系统及算法层面(主要是系统层面)进行了改进;系统层面改进点包括:带权重的分位点分割算法(weighted quantile sketch)、稀疏特征的处理(sparsity-aware splitting)、缓存(cache-aware access)、out-of-core computation、特征并行、基于rabit的分布式训练等,这些改进使得xgboost无论是在单机训练还是分布式训练上的耗时都比pGBRT/scikit-learn/spark MLLib/R gbm等有至少几倍的提升;算法层面的改进主要包括:L1/L2正则化、目标函数二阶导的应用等;
boosting基本思想是叠加多个弱分类器的结果组合成一个强分类器,叠加方法是各个基分类器的结果做加法,在生成下一个基分类器的时候,目标是拟合历史分类器结果之和与label之间的残差,预测的时候是将每个基分类器结果相加;每个基分类器都是弱分类器,目前xgboost主要支持的基分类器有CART回归树、线性分类器;

CART回归树

CART(Classification And Regression Tree)回归树,顾名思义,是一个回归模型,同C4.5分类树一样,均是二叉树模型;父节点包含所有的样本,每次分裂的时候将父节点的样本划分到左子树和右子树中,划分的原则是找到最优特征的最优划分点使得目标函数最小,CART回归树的目标函数是平方误差,而C4.5的目标函数是信息增益(划分后的信息增益最大);
对CART回归树来说,孩子节点中样本的预测值是所有样本label的平均值(why?因为CART的目标函数是平方误差,使得平方误差最小的预测值就是平均值,可以证明一下),
而C4.5决策树中孩子节点的预测值一般采用投票法;在构建树的时候,两者都采用贪心算法,即每次节点分裂时找本次所有分裂点中目标函数最小的分裂点,该方法不一定能找到全局最优的树结构,但能有效的降低计算量;

XGBoost

多数情况下,xgboost将CART回归树作为基分类器(tree-based booster);xgboost不断生成新的CART回归树,每生成一颗树即是在学习一个新的函数,这个函数将每个样本映射到唯一确定的一个叶子节点中,同一叶子节点中的所有样本共享相同的预测值,函数的目标则是去拟合所有叶子节点中样本的历史残差;损失函数可以是与CART回归树相同的均方误差,也可以是交叉熵(一般用于分类问题中)或各种rank loss(用于rank问题中);
xgboost的目标函数可以表示如下:
在这里插入图片描述
其中第一项是训练损失(平方误差、交叉熵等),第二项是正则化损失(L1、L2等);为了便于计算,对上式进行泰勒展开,并取0/1/2阶项作为目标函数的近似表示:

  • 14
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值