SCI一区论文阅读小结之深度学习在气象领域应用(未完待续) 最近文献调研,发现一个研究相近的师兄最近发的几篇文章给的启发性很高,阅读文献的同时也对这几篇文章做个总结,以防自己忘记,也分享给大家。最近的研究都是将深度学习应用到气象领域的,比如用深度学习反演葵花、风云卫星夜间云相态产品,利用可解释性方法做气候学诊断分析以及利用深度学习订正全球季节预报模式。
Python实战代码之时序预报分析-随机森林&XGBOOST&LSTM Python实战代码之时序预报分析-随机森林&XGBOOST&LSTM。利用Random forest/XGB/LSTM模型进行建模。选择不同模型只需要更改main.py中89行即可运行。ModelSelected = 'random forest' 可选的是'random forest' / 'XGB' / 'LSTM'。模型推荐需要调参(LSTM模型除外),CvState = True;如果不想对random forest和XGB调参,则将main.py中91行修改CvState
基于Pytorch的实战-卷积注意力模块(Convolutional Block Attention Module,CBAM) 卷积注意力模块(Convolutional Block Attention Module,CBAM)是一种结合了通道注意力和空间注意力的轻量级模块,它可以嵌入任何卷积神经网络中。CBAM包含两块内容:通道注意力模块以及空间注意力模块,在利用CBAM可解释性主要使用的是通道注意力模块定量化分析不同变量相对重要性,故对通道注意力模块着重解释(图7)。
基于Python的实战聚类代码(Kmeans和SOM) 在肘部法则中,我们关注的是随着簇数增加,Inertia(簇内平方和)的变化情况。通常情况下,Inertia值越低表示数据点更接近其簇中心,但并非绝对。在肘部法则中,我们寻找的是Inertia急剧下降并趋于平缓的点,这个点可能是最佳的聚类数量。因此,对于肘部法则,我们要找到Inertia值下降幅度显著变小,即形成一个“肘部”样的点,这时候增加簇数不再显著地降低Inertia。
Python基础知识之时间戳的用法 时间戳是处理数据经常要遇到的问题,比如nc数据中的time维度 或者pandas等结构中的时序数据,详细介绍过段时间更新一下,先上的常用方便的小代码。主要是利用 datetime, timedelta / np.datetime64/ pandas.date_range。
基于python的世界时转换为北京时 北京时间(China Standard Time,CST)和世界时间(Coordinated Universal Time,UTC)之间的偏移量通常为 UTC+8,但在夏令时期间(通常为每年的 3 月最后一个星期日到 10 月最后一个星期日),北京时间可能会调整为 UTC+9。
North American Multi-Model Ensemble (NMME)保姆级数据下载与简单介绍 North American Multi-Model Ensemble (NMME) 多模式集成系统预报数据,可用于季内-年际(ISI)预报,手把手教你如何下载和使用。
利用Python实现纬度加权平均(即NCL中的wgt_areaave) 当处理全球数据的时候,最常见的分析就是全球、北半球平均了,这时候一定要注意要根据纬度等信息进行加权,求加权平均,要不然结果肯定会不准。但是对于Python中,常规的计算包里面是没有的,或许现在有其他包可以实现,也可以告诉我~。
深度学习参数可视化黑科技-TensorBoard 使用方法 深度学习参数可视化黑科技-TensorBoard 使用方法,利用MobaXterm进行隧道打通,实现在linux下使用tensorboard;windows下使用tensorboard更加方便~