BZOJ 1087, 互不侵犯

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010576722/article/details/54969037

Problem

传送门

Mean

给定一张大小为N×N的棋盘,要求放置K个棋子,其中,棋子上下左右以及左上、左下、右上和右下八个位置不得有其它棋子存在。求合法方案数。

Analysis

动态规划。
状态数很多,可以先预处理出一行的合法放置方案,再处理出上一行放置的情况下,下一行哪些方案是可行的,于是一行一行转移即可。
运用位运算优化预处理,后来四重循环也能跑得飞快~~~

Code

#include<cstdio>
typedef long long ll;
const int N=7250;
int n,k,cnt,ed,f[90],num[90],v[N],nxt[N],g[90];
ll ans,dp[10][85][90];
bool vis[342];
void add(int x,int y){
    v[++ed]=y;
    nxt[ed]=g[x];
    g[x]=ed;
}
void dfs(int x,int c,int t){
    if(!vis[x]) vis[x]=1,f[++cnt]=x,num[cnt]=c;
    if(c==k || x&3) return;
    while(--t) if(!(x&1<<t)) dfs(x|1<<t-1,c+1,t);
}
int main(){
    scanf("%d%d",&n,&k);
    dfs(0,0,n+1);
    for(int i=1;i<=cnt;i++) for(int j=i;j<=cnt;j++) if(!(f[i]&f[j] || f[i]>>1&f[j] || f[i]&f[j]>>1)){
        add(i,j);
        if(i!=j) add(j,i);
    }
    for(int i=1;i<=cnt;i++) dp[1][num[i]][i]++;
    for(int i=1;i<n;i++) for(int j=0;j<=k;j++) for(int t=1;t<=cnt;t++) for(int u=g[t];u;u=nxt[u]) dp[i+1][j+num[v[u]]][v[u]]+=dp[i][j][t];
    for(int i=1;i<=cnt;i++) ans+=dp[n][k][i];
    printf("%lld",ans);
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页