Jessius的博客

blog.jessun.me

BZOJ 1004, 洗牌

Problem

传送门

Mean

参见题目描述。

Analysis

等价类计数问题。
根据Burnside引理,只需统计每种置换不动点的个数后除以置换数即可。
其中,求不动点个数是类似于背包问题的动规,而除法在模意义下需要用扩欧求得逆元

Code

#include<cstdio>
#include<cstring>
const int N=65;
int a,b,c,n,m,p,y,z,ans,f[N],x[N],dp[25][25][25];
bool vis[N];
int dfs(int x,int cnt){
    vis[x]=1;
    if(!vis[f[x]]) return dfs(f[x],cnt+1);
    return cnt;
}
void exgcd(int a,int b,int &x,int &y){
    if(!b) x=1,y=0;
    else{exgcd(b,a%b,y,x);y-=x*(a/b);}
}
int main(){
    scanf("%d%d%d%d%d",&a,&b,&c,&m,&p);
    n=a+b+c,m++;
    for(int i=0;i<m;i++){
        x[0]=0;
        if(!i) for(int j=1;j<=n;j++) f[j]=j;
        else for(int j=1;j<=n;j++) scanf("%d",&f[j]),vis[j]=0;
        for(int j=1;j<=n;j++) if(!vis[j]) x[++x[0]]=dfs(j,1);
        memset(dp,0,sizeof(dp));dp[0][0][0]=1;
        for(int i=1;i<=x[0];i++) for(int j=a;j>=0;j--) for(int k=b;k>=0;k--) for(int q=c;q>=0;q--){
            if(j>=x[i]) (dp[j][k][q]+=dp[j-x[i]][k][q])%=p;
            if(k>=x[i]) (dp[j][k][q]+=dp[j][k-x[i]][q])%=p;
            if(q>=x[i]) (dp[j][k][q]+=dp[j][k][q-x[i]])%=p;
        }
        (ans+=dp[a][b][c])%=p;
    }
    exgcd(m,p,y,z);
    if(y<0) y+=p;
    printf("%d",ans*y%p);
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010576722/article/details/54982163
文章标签: BZOJ 数学 DP C++
个人分类: BZOJ 数学 DP
上一篇BZOJ 1029, 建筑抢修
下一篇BZOJ 1878, HH的项链
想对作者说点什么? 我来说一句

BZOJ题目镜像

2014年09月14日 15.01MB 下载

bzoj FFT 的模版

2011年12月20日 3KB 下载

没有更多推荐了,返回首页

关闭
关闭