数组中的逆序对
- 参与人数:1170时间限制:1秒空间限制:32768K
- 通过比例:27.36%
- 最佳记录:0 ms|8552K(来自 )
题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。
这题放了很久,前几天去北京渣打玩了下,表示有点受打击,工程题还是没经验啊!有需要的可以问我要题。
这题还是比较巧的。(自我感觉)。eg: 7 5 6 4
首先分成两半 (7 5)(6 4)
接着再分成两半 (7)(5)(6)(4) //直到分成1份,即长度为1的子数组
然后合并,排序,统计 (5 7)(4 6) //长度为2了。
再合并,统计 (4 5 6 7) //长度为4了。
下面来讲下合并统计的过程,data数组中存了,((5 7)( 4 6))指针分别指向两段的结尾;
比较7和6,发现7大于6,所以把7放入新的数组copy,他的逆序数为后面的数组的当前大小即2;
接着指针前移,5比6小,把6放入新的数组,没有逆序数,接着同理5和4比较,5放入,逆序数为1;
最后把剩下的没放完的数组放入copy,递归;
说的简单,写代码这种事还是得亲身尝试才可以!!!
#include<stdio.h>
#include<vector>
using namespace std;
class Solution {
public:
int InversePairs(vector<int> data) {
if(data.size()<=0) return NULL;
vector<int> copy(data); //拷贝data
int cnt=InversePairs(data,copy,0,data.size()-1); //多态
return cnt;
}
int InversePairs(vector<int> &data,vector<int> ©,int start,int end)
{
if(start==end) //结束条件
{
copy[start]=data[start];
return 0;
}
int len=(end-start)/2;
int left=InversePairs(copy,data,start,start+len);
int right=InversePairs(copy,data,start+len+1,end);
//前半段最后一个数字下标
int i=start+len;
//后半段最后一个数字下标
int j=end;
//当前指针
int indexCopy=end;
int cnt=0;
//计算这一段内逆序数的个数
while(i>=start && j>=start+len+1)
{
if(data[i]>data[j])
{
copy[indexCopy--]=data[i--];//copy用来复制存新的数组
cnt+=j-start-len;//记录前数组在后数组中的逆序个数
}
else
{
copy[indexCopy--]=data[j--];//否则copy等于后面的数组往下放
}
}//出while表示前半段已经没有后半段的逆序数了。然后把剩余的存起来
for(;i>=start;--i)
{
copy[indexCopy--]=data[i];
}
for(;j>=start+len+1;--j)
{
copy[indexCopy--]=data[j];
}
return left+right+cnt;
}
};
int main()
{
Solution so;
vector<int> ve;
ve.push_back(7);
ve.push_back(5);
ve.push_back(6);
ve.push_back(4);
int cnt=so.InversePairs(ve);
printf("%d\n",cnt);
return 0;
}