自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 WORD2VEC 学习路线

最近看NLP的东西比较多。就拿现在google 基于神经网络做的 word2vec 作为博客的开始吧,今后会陆陆续续补充内容。   基本是分4块内容:   1.神经网络语言模型 (http://machinelearning.wustl.edu/mlpapers/paper_files/BengioDVJ03.pdf)   2.语言模型分层优化(http://www.i

2014-03-03 19:02:38 1703 1

原创 二、【word2vec学习路线】语言模型分层优化

上篇介绍了神经网络语言模型,因为每次训练都与词表大小线性相关,所以too expensive。本篇主要介绍word2vec里面应用的一种加速优化的方法可以把O(|V|)复杂度降至O(log|V|)

2014-03-04 16:50:29 2242

原创 一、【word2vec学习路线】神经网络语言模型

1. 统计语言模型 (statistical model of language)统计语言模型中,把一段包含T个词的语料表示为w_t 表示第t个词,统计每个词在前面n个词出现的条件下的概率,用一幅图来表达就是:应用这个模型的时候,为了降低复杂度,基于马尔科夫假设(Markov Assumption):下一个词的出现仅依赖于它前面的一个或几个词,上面的公式可以近似

2014-03-03 18:59:55 4831 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除