LightOJ 1096 nth Term (构造矩阵)

题意 :

 f(n)    =    a * f(n-1) + b * f(n-3) + c, if(n > 2)
           =    0, if(n ≤ 2)

(n <= 10^8)

思路 : 一开始是寻找循环节去做的,  wa了几发后觉得有问题,因为它形成循环的条件需要的是连续出现一段f[x], f[x+1], f[x+2]都和前面某一段相同, 因而出现循环的可能不大。

正解应该是构造矩阵来做, 利用矩阵的幂运算二进制化来优化n。 

构造出来的矩阵为 :


#include 
   
   
    
    
#include 
    
    
     
     

const int mod = 10007;

struct mat{
    int a[5][5];
};
int n, a, b, c;

mat mul(mat a, mat b){
    mat ans;
    for (int i = 1; i <= 4; i++){
        for (int j = 1; j <= 4; j++){
            ans.a[i][j] = 0;
            for (int k = 1; k <= 4; k++){
                ans.a[i][j] += a.a[i][k] * b.a[k][j];
                ans.a[i][j] %= mod;
            }
        }
    }
    return ans;
}

void init(mat &t){
    for (int i = 1; i <= 4; i++)
        for (int j = 1; j <= 4; j++)
        t.a[i][j] = 0;
}

int solve(){
    if (n <= 2)return 0;
    mat ans, aa;
    init(ans); init(aa);
    aa.a[1][1] = a; aa.a[1][3] = b; aa.a[1][4] = c;
    aa.a[2][1] = 1; aa.a[3][2] = 1; aa.a[4][4] = 1;
    ans.a[1][1] = ans.a[2][2] = ans.a[3][3] = ans.a[4][4] = 1;
    n -= 2;
    while (n){
        if (n & 1){
            ans = mul(ans, aa);
        }
        n /= 2;
        aa = mul(aa, aa);
    }
    return ans.a[1][4];
}

int main(){
    int T;
    scanf("%d", &T);
    for (int cas = 1; cas <= T; cas++){
        scanf("%d%d%d%d", &n, &a, &b, &c);
        printf("Case %d: %d\n", cas, solve());
    }
    return 0;
}

    
    
   
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值