求N的阶乘最右边的非零位
26!= 1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20*21*22*23*24*25*26
=(1*2*3*4*5*6*7*8*9*10)*(11*12*13*14*15*16*17*18*19*20)*(21*22*23*24*25*26)
=(1*2*3*4*6*7*8*9)*(11*12*13*14*16*17*18*19)*(21*22*23*24*26) * (5*10*15*20*25)
= (72526/4)* (2234808576/4)* (6630624/2)* (1*2*3*4*5)
= 18144*558702144*3315312* (1*2*3*4*5)
=4*4*5*5!
=64
=4
很奇葩的一种想法,每10个数分为一组,每组提取出来两个2和两个5,这样就可以把0都排除。可以看出每组的尾数都为4,
x:第一部分的尾数,即能够十个数一组的那部分,N个4相乘尾数也是有规律的打表为last。
y: 剩余的不足十个数的尾数。
z:提取出来的5的倍数的尾数
f(x)= x*y*f(x/5);
要用到 大整数来存储
f(x/5)转化为 f(x*2/10)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
using namespace std;
int last[10]={1,1,2,6,4,4,4,8,4,6};
int slove(char *gn)
{
int digit=1;
int len=strlen(gn);
reverse(gn,gn+len);
if(len==1&&gn[0]<'5')
return last[gn[0]-'0'];
while(len)
{
int x=(len>1&&(gn[1]-'0')&1)?4:6;
int y=(last[gn[0]-'0']/(gn[0]-'0'>=5?2:1));
digit=((digit%10)*x*y)%10;
int i=0,bit=0;
while(gn[i])
{
bit+=(gn[i]-'0')*2;
gn[i]=bit%10+'0';
bit/=10;
i++;
}
if(bit) {
gn[i]=bit%10+'0';
i++;
}
gn[i]='\0';
len=i-1;
gn++;
}
return digit;
}
int main()
{
char str[10000];
while(scanf("%s",str)!=EOF)
{
printf("%d\n",slove(str));
}
return 0;
}