- 博客(31)
- 收藏
- 关注
转载 OpenCV学习笔记——用haar特征训练自己的分类器(再做手势检测)
之前介绍过一篇利用级联分类器对目标进行检测的文章http://blog.csdn.net/yang_xian521/article/details/6973667,用的就是haar特征。发现OpenCV自带的库里的haar特征只有人脸、人脸的器官和人的身体,最近又想玩一个人手的检测,之前用颜色特征做的,感觉很不靠谱,这次用haar特征再试一次。这就需要用haartraining这个工具训练自己的手...
2018-10-05 23:04:05 1140
转载 OpenCV中基于Haar特征和级联分类器的人脸检测(三)
使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零。 今年3月23日,微软公司在推特(Twitter)社交平台上推出了一个基于机器学习的智能聊天机器人Tay,Tay被设定为一个年龄为十几岁的女孩,主要目标受众是18岁至24岁的青少年。人们只需要@一下T...
2018-10-05 11:42:30 1478
转载 OpenCV学习记录(二):自己训练haar特征的adaboost分类器进行人脸识别
上一篇文章中介绍了如何使用OpenCV自带的haar分类器进行人脸识别(点我打开)。这次我试着自己去训练一个haar分类器,前后花了两天,最后总算是训练完了。不过效果并不是特别理想,由于我是在自己的笔记本上进行训练,为减少训练时间我的样本量不是很大,最后也只是勉强看看效果了。网上有关的资料和博客可以说很多了,只要耐心点总是能成功的。采集样本:首先要训练,就得有训练集。网上有很多国外高校开...
2018-10-05 11:37:08 1173
转载 OpenCV学习记录(一):使用haar分类器进行人脸识别
https://blog.csdn.net/hongbin_xu/article/details/74202193OpenCV支持的目标检测的方法是利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification)。OpenCV2之后的C++接口除了Haar特征以外也可以使用LBP特征。介绍haar分类器理论知识:1、http://w...
2018-10-05 11:35:49 2311
转载 图像融合(六)-- 小波融合
图像融合(六)-- 小波融合 基于小波的融合(wavelet)图像融合(六)-- 小波融合。这是一篇关于小波融合的图像融合算法,供自己以后的学习。感谢此篇文章作者的付出。http://blog.sina.com.cn/s/blog_149e9d2ec0102wxv9.html 转载:http://www.cnblogs.com/silence-hust/p/419348...
2018-10-05 11:31:40 9351 4
转载 图像融合(五)-- 梯度金字塔
图像融合(五)-- 梯度金字塔 基于梯度金字塔(Gradient Pyramid,GP)分解的图像融合算法。GP 也是一种基于高斯金字塔的多尺度分解算法。通过对高斯金字塔每层图像进行梯度算子运算,便可获得图像的 GP表示。GP 每层分解图像都包含水平、垂直和两个对角线四个方向的细节信息,能更好地提取出图像的边缘信息,提高了稳定性和抗噪性。具有方向性的梯度塔形分解能够很好地提供图像...
2018-10-05 11:26:42 1463 1
转载 Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔
一、 图像金字塔 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺寸)逐渐降低的图像,一直到金字塔的顶部只包含一个像素点的图像,这就构成了传统意义上的图像金字塔。 获得图像金字塔一般包括二个步骤:1. 利用低通滤波器平滑图像 2. 对平滑...
2018-10-03 22:32:27 455
转载 图像融合(四)-- 对比度金字塔
图像融合(四)-- 对比度金字塔 对比度金字塔融合 在考虑人类视觉系统对局部对比度敏感这一视觉特性的基础上,提出了基于对比度金字塔(Contrast Pyramid,CP)分解的图像融合算法。CP 分解类似于 LP 分解,但它的每一层图像是高斯金字塔相邻两层图像的比率。 CP 融合算法应用于合成孔径雷达和前视红外图像融合。1、原理阐述 (1)得到高斯金字塔(如上...
2018-10-03 22:31:18 1316
转载 图像融合(三)-- 拉普拉斯金字塔
图像融合(三)-- 拉普拉斯金字塔 2、拉普拉斯金字塔融合 图像金字塔方法的原理是:将参加融合的的每幅图像分解为多尺度的金字塔图像序列,将低分辨率的图像在上层,高分辨率的图像在下层,上层图像的大小为前一层图像大小的1/4。层数为0,1,2……N。将所有图像的金字塔在相应层上以一定的规则融合,就可得到合成金字塔,再将该合成金字塔按照金字塔生成的逆过程进行重构,得到融合金字塔。这个...
2018-10-03 22:28:29 3214
转载 图像融合(二)-- 简单加权融合
这个是简单加权的图像融合算法介绍,供自己以后学习。在此非常感谢写这篇文章的作者的共享。http://blog.sina.com.cn/s/blog_149e9d2ec0102wxv4.html 转载:http://www.cnblogs.com/silence-hust/p/4193150.html 图像融合(二)-- 简单加权融合 简单加权融合也叫做像素加权平均法(We...
2018-09-29 10:43:52 4089
转载 图像融合(一)-- 概述
这有几篇关于图像融合的文章,对于做图像的有一定的帮助。我转载的目的是为了以后自己处理图像时,能够及时复习相关知识。非常感谢相关作者的付出。http://blog.sina.com.cn/s/blog_149e9d2ec0102wxv3.html 转载:http://www.cnblogs.com/silence-hust/p/4192363.html 图像融合(一)-- 概述...
2018-09-29 10:39:26 1383
转载 浅析人脸检测之Haar分类器方法
浅析人脸检测之Haar分类器方法 [补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉. 我本人并非做CV的, 这两年也都没有再接触CV, 作为一个本科毕业的苦逼码工, 很多理论基础都不扎实, 回顾这篇文章的时候, 我知道其实有很多地方都是写的模
2017-10-16 11:20:28 238
转载 基于VGG19的识别中国人、韩国人、日本人分类器
这是本学期机器学习课程的项目。通过这个项目了解了不少东西,希望通过博客记录下整个项目过程。国外有一个网站上有一个非常有趣的测试,他们在街头收集了一共18名中国人、韩国人、日本人的照片,放在网站上,让人去识别。博主自己尝试过一次,18个对了7个,38%的正确率,跟猜的概率并没有相差太多,恰好刚在学习深度学习一些模型,了解到可以通过深度的学习模型构建分类器去识别。在一时冲动之下,有了这个项
2017-10-16 11:13:13 3632
原创 TensorFlow实战——CNN(VGGNet19)——图像风格转化
我们可以将一幅画的风格提取,应用到两外一幅画中, 让另一幅画也拥有相同的画风,这样我们就可以将我们喜欢的画仿制为各种不同画风的画家的作品。如何将一张花:将其风格转化为和梵高的《星夜》一样具有鲜明艺术的风格呢?先给出完整的代码:https://github.com/xiaoyesoso/TensorFlowinAction/blob/master/
2017-10-15 16:04:45 3148
转载 使用selectivesearch工具进行目标检测
#第一步:程序引用包import cv2import selectivesearchimport matplotlib.pyplot as pltimport matplotlib.patches as mpatchesimport numpy as np#原始图片为拿画板随便写的几个数字#第二步:执行搜索工具,展示搜索结果image2="test2.png"#用cv2读取图片img
2017-10-15 15:45:08 2271 1
原创 使用Imagenet VGG-19模型进行图片识别
该程序参考 http://blog.csdn.net/wyl1987527/article/details/68168115 编写资源:1.相关的vgg模型下载网址http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat2.ImageNet 1000种
2017-10-15 15:41:12 4259 1
原创 sklean 数据集特征提取
1 利用地方差的方法减少特征数也及(PCA)去除那些方差不满足基本设定的门限值得特征,特别是方差值为零的,因为方差值为零,那么数据集在该方向上比较密集,这数据无法通过学习来分类,因此该维度上的向量对特征的分类没有太多用处,因此可以去除该维度的特征,以减少计算复杂度。例如,假设我们有一个具有布尔功能的数据集,我们想要删除在超过80%的样本中要么是一个或零(on或off)的所有特性。布尔特征是
2017-09-18 22:35:08 5118
转载 sklearn 数据加载,数据归一,特征选择,逻辑回归,贝叶斯,k近邻,决策树,SVM
加载数据(Data Loading) 我们假设输入时一个特征矩阵或者csv文件。 首先,数据应该被载入内存中。scikit-learn的实现使用了NumPy中的arrays,所以,我们要使用NumPy来载入csv文件。 以下是从UCI机器学习数据仓库中下载的数据。import numpy as npimport urllib# url wi
2017-09-18 21:20:18 861
原创 sklearn 数据集(二)
sklearn还有有个强大的功能,可以生成数据 利用sklearn.datasets.make_语句生成数据集 sklearn.datasets.make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0,effective_rank=None, tail_strength=0.5,
2017-09-18 21:16:37 2263
原创 sklearn 学习(一)数据集介绍
sklearn 自带有很多数据集,可以通过导入sklearn模块导入数据集1 自带数据集(packaged.Dataset)sklearn.datasets.load_2 可在线下载的数据集(Downloadable Dataset)sklearn.datasets.fetch_3 计算机生成的数据集(Generated Dataset)sklearn.datasets.m
2017-09-18 11:47:19 4593
原创 Python 基于Tkinter的GUI图形界面学习
用Tkinter画图首先要创建一个根挂件,可以用Tk()产生然后要产生不同类型的小挂件,有标签Label,按钮Button,接口Entry 之类的,具体的查看网上的详细文档。比如说用widget = Label(None, text = 'hello')产生了一个内容为hello的标签之后还要确定把这个标签放在哪个位置,所以就要用到pack()pack有很多选项,比如说要不
2017-09-16 11:42:52 5509
原创 Python中Math包的函数
Python运算中可以应用Python最基本的数学运算功能。此外,math包补充了更多的函数。当然,如果想要更加高级的数学功能,可以考虑选择标准库之外的numpy和scipy项目,它们不但支持数组和矩阵运算,还有丰富的数学和物理方程可供使用。math包math包主要处理数学相关的运算。math包定义了两个常数:math.e # 自然常数emath.pi # 圆
2017-09-13 17:22:46 11429
转载 Python常用函数
1 python常用常用函数1.1 常用内置函数1.2 类型转换函数1.3 和操作系统相关的调用1.3.1 操作举例1.4 用os.path编写平台无关的程序1.4.1 例子1.5 文件操作1.6 regular expression
2017-09-13 17:17:46 177
原创 Python random模块(获取随机数)常用方法和使用例子
这个模块中的随机数是伪随机数,不能应用于安全加密,如果你需要一个真正的密码安全随机数,你需要使用os.urandom()或者random模块中的SystemRandom类来实现random.randomrandom.random()用于生成一个0到1的随机符点数: 0 random.uniformrandom.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数
2017-09-13 16:56:49 2134
转载 【机器学习详解】SMO算法剖析
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754 CSDN−勿在浮沙筑高台本文力求简化SMO的算法思想,毕竟自己理解有限,无奈还是要拿一堆公式推来推去,但是静下心看完本篇并随手推导,你会迎刃而解的。推荐参看SMO原文中的伪代码。1.SMO概念上一篇博客已经详细介绍了SV
2017-09-06 11:30:56 320
转载 SVM解回归问题
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51121767 CSDN−勿在浮沙筑高台对于SVM解分类二分类问题,及多分类问题,在上一篇文章已经详述http://blog.csdn.net/luoshixian099/article/details/51073885。本文将对SVM解回归问题,进行分析。
2017-09-05 22:56:44 667
转载 SVM解二分类,多分类,及后验概率输出
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台支持向量机(Support Vector Machine)曾经在分类、回归问题中非常流行。支持向量机也称为最大间隔分类器,通过分离超平面把原始样本集划分成两部分。首先考虑最简单的情况:线性可分支持向量机,
2017-09-05 22:32:24 2400
转载 LIBSVM的使用方法
【原文:http://wenku.baidu.com/view/7e7b6b896529647d27285276.html】目 录1 Libsvm下载... 32 Libsvm3.0环境变量设置... 33 训练和测试数据集下载... 34 运行python程序的环境配置... 35 LIBSVM 使用的一般步骤是:... 36 再来说一下,libsvm-3.0的需要
2017-09-05 20:13:53 300
转载 LIBSVM简介及其使用方法
LIBSVM简介及其使用方法(台湾大学林智仁(Lin Chih-Jen)副教授等)libsvm , 林智仁libsvm 官方网站:Welcome to Chih-Jen Lin's Home Page http://www.csie.ntu.edu.tw/~cjlin/ http://www.csie.ntu.edu.tw/~cjlin/libsvm /index.
2017-09-05 20:12:42 238
转载 scikit-learn的用法
scikit-learn的用法2017-08-19 22:24 26人阅读 评论(0) 收藏 举报引言对于一些开始搞机器学习算法有害怕下手的小朋友,该如何快速入门,这让人挺挣扎的。在从事数据科学的人中,最常用的工具就是R和Python了,每个工具都有其利弊,但是python在各方面都相对胜出一些,这是因为scikit-learn库实现了很
2017-08-31 22:12:48 638
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人