python 实现使用 radix-2 快速傅里叶变换的快速多项式乘法算法

使用 radix-2 快速傅里叶变换的快速多项式乘法算法介绍

使用 radix-2 快速傅里叶变换(FFT)来实现快速多项式乘法是一种高效的算法,尤其在处理大规模数据时。其基本思想是利用 FFT 将两个多项式转换到点值表示,然后在点值表示下进行乘法操作,最后再通过逆 FFT(IFFT)转换回系数表示。

步骤分解

  1. 多项式转点值表示
    假设有两个多项式 A ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n − 1 x n − 1 A(x)=a _0+a _1x+a _2x ^2+⋯+a _{n−1}x ^{n−1} A(x)=a0+a1x+a2x2++an1xn1
    B ( x ) = b 0 + b 1 x + b 2 x 2 + ⋯ + b n − 1 x n − 1 B(x)=b_0+b_1x+b_2x ^2+⋯+b_{n−1}x^{n−1} B(x)=b0+b1x+b2x2++bn1xn1
    选择n 个不同的 x 值(通常是 n 次单位根或其幂),使用 FFT 将 A(x) 和 B(x) 转换到点值表示。
    FFT 的 radix-2 版本通过递归地将多项式分解成更小的部分,并利用单位根的对称性质来减少计算量。
  2. 点值乘法
    在点值表示下,两个多项式的乘积非常简单: C ( x i ) = A ( x i ) ⋅ B ( x i ) C(x_i)=A(x_i)⋅B(x_i) C(xi)=A(xi)B(xi),其中 x i x_i xi是所选的 n 个不同的 x 值之一。
  3. 逆 FFT 转换回系数表示
    使用逆 FFT (IFFT) 将 C ( x ) C(x) C(x)的点值表示转换回系数表示,得到 C ( x ) = C 0 + C 1 x + C 2 x 2 + ⋯ + C 2 n − 2 x 2 n − 2 C(x)=C _0+C _1x+C _2x ^2+⋯+C _{2n−2}x ^{2n−2} C(x)=C0+C1x+C2x2++C2n2x2n2
    注意:由于我们是从n 次多项式开始,结果 C(x) 的最高次项是 2n−2,但实际上我们只关心前 n 个系数(即 c 0 c_0 c0 c n − 1 c_{n−1} cn1 ),因为它们是 A ( x ) ⋅ B ( x ) A(x)⋅B(x) A(x)B(x) 的系数。
    伪代码如下
function FastPolynomialMultiply(A, B):
    n = length(A)
    if n != length(B):
        throw "Polynomials must have the same degree"

    # 填充 A 和 B 到 2n-1 长度(为 FFT 做准备)
    A_padded = pad_zeros(A, 2*n-1)
    B_padded = pad_zeros(B, 2*n-1)

    # FFT 转换到点值表示
    A_fft = FFT(A_padded)
    B_fft = FFT(B_padded)

    # 点值乘法
    C_fft = [A_fft[i] * B_fft[i] for i in range(2*n-1)]

    # 逆 FFT 转换回系数表示
    C = IFFT(C_fft)

使用 radix-2 快速傅里叶变换的快速多项式乘法算法python实现样例

下面是使用 radix-2 快速傅里叶变换(FFT)的快速多项式乘法算法的 Python 实现:

import numpy as np

def fft(a):
    n = len(a)
    if n <= 1:
        return a
    even = fft(a[0::2])
    odd = fft(a[1::2])
    t = np.exp(-2j * np.pi * np.arange(n) / n)
    return np.concatenate([even + t[:n//2] * odd, even + t[n//2:] * odd])

def ifft(a):
    n = len(a)
    if n <= 1:
        return a
    even = ifft(a[0::2])
    odd = ifft(a[1::2])
    t = np.exp(2j * np.pi * np.arange(n) / n)
    return np.concatenate([even + t[:n//2] * odd, even + t[n//2:] * odd]) / 2

def multiply_polynomials(a, b):
    n = len(a) + len(b) - 1
    size = 1 << (n - 1).bit_length()
    a = np.pad(a, (0, size - len(a)))
    b = np.pad(b, (0, size - len(b)))
    fa = fft(a)
    fb = fft(b)
    result = ifft(fa * fb)
    return np.rint(result).astype(int).tolist()

# 示例用法
a = [3, 2, 5]
b = [1, 4, 6]
result = multiply_polynomials(a, b)
print(result)

在上面的代码中,首先实现了 FFT 和 IFFT 函数,它们分别用于计算傅里叶变换和逆傅里叶变换。然后实现了 multiply_polynomials 函数,该函数用于将两个多项式相乘。具体步骤如下:

  1. 获取两个多项式的长度,并计算乘积多项式的长度。
  2. 将输入多项式分别补零使其长度为 2 的幂次,并进行傅里叶变换得到频域表示。
  3. 将两个多项式在频域中进行点乘。
  4. 对点乘结果进行逆傅里叶变换得到乘积多项式的系数。
  5. 将乘积多项式的系数四舍五入并转换为整数类型。
  6. 返回乘积多项式的系数列表。

上述代码中使用了 numpy 库来进行数组操作和数学计算。如果未安装 numpy,可以使用以下命令进行安装:

pip install numpy

通过运行上述代码,将会输出乘积多项式的系数列表 [3, 14, 34, 44, 30]

  • 10
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值