python 实现collatz sequence考拉兹序列算法

collatz sequence考拉兹序列算法介绍

考拉兹序列(Collatz sequence),也被称为3n+1序列或奇偶归一猜想(3x+1 problem),是一个数学中的未解问题,由德国数学家Lothar Collatz在1937年提出。

考拉兹序列的算法很简单:

选择一个正整数n。
如果n是偶数,则n除以2,即n = n/2。
如果n是奇数,则n乘以3再加1,即n = 3n + 1。
重复步骤2和3,直到n等于1。

这个序列的有趣之处在于,对于所有已知的正整数,它最终都会回到1。然而,尽管已经针对非常大的数字进行了测试,但这个猜想尚未被证明对所有正整数都成立。

以下是考拉兹序列算法的一个Python实现示例:

def collatz_sequence(n):
    sequence = [n]  # 初始化序列,包含起始数字
    while n != 1:
        if n % 2 == 0:
            n = n // 2
        else:
            n = 3 * n + 1
        sequence.append(n)  # 将下一个数字添加到序列中
    return sequence

# 示例
n = 13
print(collatz_sequence(n))

在这个示例中,collatz_sequence函数接受一个正整数n作为输入,并返回一个列表,其中包含从n开始的考拉兹序列的所有元素,直到序列到达1。对于n = 13,该函数的输出将是[13, 40, 20, 10, 5, 16, 8, 4, 2, 1],显示了从13开始直到1的考拉兹序列。

collatz sequence考拉兹序列算法python实现样例

Collatz序列,也被称为考拉兹序列,是指通过以下运算规则生成的数列:对于任意正整数n,如果n是偶数,则将其除以2;如果n是奇数,则将其乘以3再加1。不论初始值是多少,最终都会收敛到1。

以下是使用Python实现Collatz序列的代码:

def collatz_sequence(n):
    sequence = [n]
    while n != 1:
        if n % 2 == 0:
            n = n // 2
        else:
            n = 3 * n + 1
        sequence.append(n)
    return sequence

# 测试示例
n = 6
sequence = collatz_sequence(n)
print(sequence)

这段代码定义了一个函数collatz_sequence,它接受一个正整数n作为输入,并返回生成的Collatz序列。在函数内部,通过循环迭代进行计算,直到n的值为1为止。在每一次迭代中,根据n的奇偶性来更新n的值,并将更新后的n添加到序列中。最终返回生成的序列。

上述代码中的测试示例为n=6,运行结果为:

[6, 3, 10, 5, 16, 8, 4, 2, 1]

这是n=6对应的Collatz序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值