系列文章目录
前言
我们首次在真实世界的四足机器人上成功部署了基于全身采样的 MPC 系统。我们的方法使用从模型预测路径积分(MPPI)控制中得出的单一控制策略,实现了实时、接触丰富的运动和操作。演示包括推箱子、爬箱子和在崎岖地形上稳健行走。
一、什么是 MPPI?
模型预测路径积分(MPPI)控制是一种无梯度、基于采样的算法,广泛应用于复杂系统的实时控制。MPPI 从多元高斯分布 中采样
个控制轨迹,其中
是
时刻的平均控制输入,
是协方差矩阵。
对于每个采样轨迹,都要对系统进行前向模拟,以计算出相应的状态序列,并计算出每个轨迹的累积成本 。每条轨迹的权重根据其最小-最大归一化成本计算:
然后,以样本的加权平均值计算更新后的控制输入:
其中, 是第
个轨迹的成本,
是相应的权重,
是一个温度参数,用于控制权重对成本差异的敏感度。
越小,控制器对低成本轨迹的选择性越强,而
越大,所有样本的贡献越平滑。
这一过程是以 MPC 的方式进行的,因此 MPPI 适用于具有接触动力学或高维状态空间的系统的实时应用。
二、概述
本文介绍了一种为真实世界中的有腿机器人实时合成全身运动和操作策略的系统。受机器人仿真领域最新进展的推动,我们利用 MuJoCo 仿真器的高效并行化功能,实现了对机器人状态和动作轨迹的快速采样。我们的研究结果表明,只需采用非常简单的控制策略,就能在真实世界中实现令人惊讶的有效运动和操作能力。我们在几个硬件和模拟实验中演示了我们的方法:在平坦和不平坦地形上的稳健运动、爬过高度与机器人相当的箱子,以及将箱子推到目标位置。据我们所知,这是基于全身采样的 MPC 首次成功应用于真实世界的足式机器人硬件。
2.1 硬件实验


