题目:http://acm.tju.edu.cn/toj/showp1380.html
Stan and Ollie play the game of multiplication by multiplying an integer p by one of the numbers 2 to 9. Stan always starts with p = 1, does his multiplication, then Ollie multiplies the number, then Stan and so on. Before a game starts, they draw an integer 1 < n < 4294967295 and the winner is who first reaches p ≥ n. Each line of input contains one integer number n. For each line of input output one line either
Stan wins.or
Ollie wins.assuming that both of them play perfectly.
Sample input
162 17 34012226
Output for sample input
Stan wins. Ollie wins. Stan wins.
我的理解:
1. 当输入为2~9以内的数时,由于是stan先开始,所以stan肯定赢;
2. 当输入为10~18(9*2)时,无论stan出什么,肯定不超过9,那么Ollie肯定能出一个数使乘积大于等于输入的数,比如输入18时,stan出2,Ollie出9,9*2>=18,所以Ollie肯定赢;
3. 当输入为19~162(9*2*9)时,stan无论出2~9之内的什么数,Ollie乘以2~9之内的数都不会超过81,而且题目里面也说过“them both play perfectly”,故stan出9,Ollie出2~9内的任意数,stan都可以使最后结果>=19~162内的任意数。故stan肯定赢;
…………
由此可以看出这是一个对称的循环,周期为18,当数M模18后的结果不足9时,stan胜,反之Ollie胜。
注意:当M为18时,是Ollie胜。
代码如下:
#include<iostream>
using namespace std;
int main(){
double n;
while(cin>>n){
while(n>18)
n=n/18;
if(n<=9)
cout<<"Stan wins."<<endl;
else
cout<<"Ollie wins."<<endl;
}
return 0;
}