利用Python进行数据分析第二版复现(十三)_5

实例分析

14.5 2012联邦选举委员会数据库

import pandas as pd
import numpy as np
fec = pd.read_csv('datasets/fec/P00000001-ALL.csv')#导入数据
fec.info()#查看信息的相关数据描述
E:\anaconda\lib\site-packages\IPython\core\interactiveshell.py:3058: DtypeWarning: Columns (6) have mixed types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001731 entries, 0 to 1001730
Data columns (total 16 columns):
cmte_id              1001731 non-null object
cand_id              1001731 non-null object
cand_nm              1001731 non-null object
contbr_nm            1001731 non-null object
contbr_city          1001712 non-null object
contbr_st            1001727 non-null object
contbr_zip           1001620 non-null object
contbr_employer      988002 non-null object
contbr_occupation    993301 non-null object
contb_receipt_amt    1001731 non-null float64
contb_receipt_dt     1001731 non-null object
receipt_desc         14166 non-null object
memo_cd              92482 non-null object
memo_text            97770 non-null object
form_tp              1001731 non-null object
file_num             1001731 non-null int64
dtypes: float64(1), int64(1), object(14)
memory usage: 68.8+ MB
fec.iloc[123456]
cmte_id                             C00431445
cand_id                             P80003338
cand_nm                         Obama, Barack
contbr_nm                         ELLMAN, IRA
contbr_city                             TEMPE
contbr_st                                  AZ
contbr_zip                          852816719
contbr_employer      ARIZONA STATE UNIVERSITY
contbr_occupation                   PROFESSOR
contb_receipt_amt                          50
contb_receipt_dt                    01-DEC-11
receipt_desc                              NaN
memo_cd                                   NaN
memo_text                                 NaN
form_tp                                 SA17A
file_num                               772372
Name: 123456, dtype: object
unique_cands = fec.cand_nm.unique()#获取候选人名单

parties = {'Bachmann, Michelle': 'Republican',
'Cain, Herman': 'Republican',
'Gingrich, Newt': 'Republican',
'Huntsman, Jon': 'Republican',
'Johnson, Gary Earl': 'Republican',
'McCotter, Thaddeus G': 'Republican',
'Obama, Barack': 'Democrat',
'Paul, Ron': 'Republican',
'Pawlenty, Timothy': 'Republican',
'Perry, Rick': 'Republican',
"Roemer, Charles E. 'Buddy' III": 'Republican',
'Romney, Mitt': 'Republican',
'Santorum, Rick': 'Republican'}
#确定党派和人名对应字典 

fec.cand_nm[123456:123461]
fec.cand_nm[123456:123461].map(parties)#map方法
fec.cand_nm[123456:123461].map(parties)
fec['party'] = fec.cand_nm.map(parties)#用于所有的数据
fec['party'].value_counts()
Democrat      593746
Republican    407985
Name: party, dtype: int64
(fec.contb_receipt_amt > 0).value_counts()#计算负出的资源
True     991475
False     10256
Name: contb_receipt_amt, dtype: int64
fec = fec[fec.contb_receipt_amt > 0]#限定出的资源为正的数据

fec_mrbo = fec[fec.cand_nm.isin(['Obama, Barack','Romney, Mitt'])]
#只统计两个人的竞选信息

根据职业和雇主统计赞助信息

通过信息分析,对比出每个数据行业对政党的倾向性。

fec.contbr_occupation.value_counts()[:10]#根据职业计算出出资额
RETIRED                                   233990
INFORMATION REQUESTED                      35107
ATTORNEY                                   34286
HOMEMAKER                                  29931
PHYSICIAN                                  23432
INFORMATION REQUESTED PER BEST EFFORTS     21138
ENGINEER                                   14334
TEACHER                                    13990
CONSULTANT                                 13273
PROFESSOR                                  12555
Name: contbr_occupation, dtype: int64
#将一个职业信息映射到另一个职业信息
occ_mapping = {
'INFORMATION REQUESTED PER BEST EFFORTS' : 'NOT PROVIDED',
'INFORMATION REQUESTED' : 'NOT PROVIDED',
'INFORMATION REQUESTED (BEST EFFORTS)' : 'NOT PROVIDED',
'C.E.O.': 'CEO'
}

f = lambda x: occ_mapping.get(x, x)
fec.contbr_occupation = fec.contbr_occupation.map(f)
#对雇主信息做相同处理
emp_mapping = {
'INFORMATION REQUESTED PER BEST EFFORTS' : 'NOT PROVIDED',
'INFORMATION REQUESTED' : 'NOT PROVIDED',
'SELF' : 'SELF-EMPLOYED',
'SELF EMPLOYED' : 'SELF-EMPLOYED',
}

f = lambda x: emp_mapping.get(x, x)
fec.contbr_employer = fec.contbr_employer.map(f)

通过pivot_table对信息进行聚合,然后过滤掉出资不足200万美元的数据。

by_occupation = fec.pivot_table('contb_receipt_amt',
                                index='contbr_occupation',
                                columns='party', aggfunc='sum')
over_2mm = by_occupation[by_occupation.sum(1) > 2000000]
print(over_2mm)
party                 Democrat    Republican
contbr_occupation                           
ATTORNEY           11141982.97  7.477194e+06
CEO                 2074974.79  4.211041e+06
CONSULTANT          2459912.71  2.544725e+06
ENGINEER             951525.55  1.818374e+06
EXECUTIVE           1355161.05  4.138850e+06
HOMEMAKER           4248875.80  1.363428e+07
INVESTOR             884133.00  2.431769e+06
LAWYER              3160478.87  3.912243e+05
MANAGER              762883.22  1.444532e+06
NOT PROVIDED        4866973.96  2.056547e+07
OWNER               1001567.36  2.408287e+06
PHYSICIAN           3735124.94  3.594320e+06
PRESIDENT           1878509.95  4.720924e+06
PROFESSOR           2165071.08  2.967027e+05
REAL ESTATE          528902.09  1.625902e+06
RETIRED            25305116.38  2.356124e+07
SELF-EMPLOYED        672393.40  1.640253e+06
over_2mm.plot(kind='barh')#画出框图
<matplotlib.axes._subplots.AxesSubplot at 0x752e710>

在这里插入图片描述

def get_top_amounts(group, key, n=5):
    totals = group.groupby(key)['contb_receipt_amt'].sum()
    return totals.nlargest(n)
#统计出资最多的职业和企业
grouped = fec_mrbo.groupby('cand_nm')
grouped.apply(get_top_amounts, 'contbr_occupation', n=7)
cand_nm        contbr_occupation                     
Obama, Barack  RETIRED                                   25305116.38
               ATTORNEY                                  11141982.97
               INFORMATION REQUESTED                      4866973.96
               HOMEMAKER                                  4248875.80
               PHYSICIAN                                  3735124.94
               LAWYER                                     3160478.87
               CONSULTANT                                 2459912.71
Romney, Mitt   RETIRED                                   11508473.59
               INFORMATION REQUESTED PER BEST EFFORTS    11396894.84
               HOMEMAKER                                  8147446.22
               ATTORNEY                                   5364718.82
               PRESIDENT                                  2491244.89
               EXECUTIVE                                  2300947.03
               C.E.O.                                     1968386.11
Name: contb_receipt_amt, dtype: float64
grouped.apply(get_top_amounts, 'contbr_employer', n=10)
cand_nm        contbr_employer                       
Obama, Barack  RETIRED                                   22694358.85
               SELF-EMPLOYED                             17080985.96
               NOT EMPLOYED                               8586308.70
               INFORMATION REQUESTED                      5053480.37
               HOMEMAKER                                  2605408.54
               SELF                                       1076531.20
               SELF EMPLOYED                               469290.00
               STUDENT                                     318831.45
               VOLUNTEER                                   257104.00
               MICROSOFT                                   215585.36
Romney, Mitt   INFORMATION REQUESTED PER BEST EFFORTS    12059527.24
               RETIRED                                   11506225.71
               HOMEMAKER                                  8147196.22
               SELF-EMPLOYED                              7409860.98
               STUDENT                                     496490.94
               CREDIT SUISSE                               281150.00
               MORGAN STANLEY                              267266.00
               GOLDMAN SACH & CO.                          238250.00
               BARCLAYS CAPITAL                            162750.00
               H.I.G. CAPITAL                              139500.00
Name: contb_receipt_amt, dtype: float64

对出资额分组

可以利用cut函数根据出资额将数据离散化到多个面元中

bins = np.array([0, 1, 10, 100, 1000, 10000,
                 100000, 1000000, 10000000])
labels = pd.cut(fec_mrbo.contb_receipt_amt, bins)
labels
411         (10, 100]
412       (100, 1000]
413       (100, 1000]
414         (10, 100]
415         (10, 100]
             ...     
701381      (10, 100]
701382    (100, 1000]
701383        (1, 10]
701384      (10, 100]
701385    (100, 1000]
Name: contb_receipt_amt, Length: 694282, dtype: category
Categories (8, interval[int64]): [(0, 1] < (1, 10] < (10, 100] < (100, 1000] < (1000, 10000] < (10000, 100000] < (100000, 1000000] < (1000000, 10000000]]
grouped = fec_mrbo.groupby(['cand_nm', labels])
print(grouped.size().unstack(0))
cand_nm              Obama, Barack  Romney, Mitt
contb_receipt_amt                               
(0, 1]                       493.0          77.0
(1, 10]                    40070.0        3681.0
(10, 100]                 372280.0       31853.0
(100, 1000]               153991.0       43357.0
(1000, 10000]              22284.0       26186.0
(10000, 100000]                2.0           1.0
(100000, 1000000]              3.0           NaN
(1000000, 10000000]            4.0           NaN
#可视化显示相关信息
bucket_sums = grouped.contb_receipt_amt.sum().unstack(0)
normed_sums = bucket_sums.div(bucket_sums.sum(axis=1), axis=0)

normed_sums[:-2].plot(kind='barh')
<matplotlib.axes._subplots.AxesSubplot at 0x7901ef0>

在这里插入图片描述

根据州统计赞助信息

然后按着地域进行统计分析

grouped = fec_mrbo.groupby(['cand_nm', 'contbr_st'])
totals = grouped.contb_receipt_amt.sum().unstack(0).fillna(0)
totals = totals[totals.sum(1) > 100000]
percent = totals.div(totals.sum(1), axis=0)#统计总出资额度,且各行再除以总数

print(percent[:10])
cand_nm    Obama, Barack  Romney, Mitt
contbr_st                             
AK              0.765778      0.234222
AL              0.507390      0.492610
AR              0.772902      0.227098
AZ              0.443745      0.556255
CA              0.679498      0.320502
CO              0.585970      0.414030
CT              0.371476      0.628524
DC              0.810113      0.189887
DE              0.802776      0.197224
FL              0.467417      0.532583

说明:
放上参考链接,这个系列都是复现的这个链接中的内容。
放上原链接: https://www.jianshu.com/p/04d180d90a3f
作者在链接中放上了书籍,以及相关资源。因为平时杂七杂八的也学了一些,所以这次可能是对书中的部分内容的复现。也可能有我自己想到的内容,内容暂时都还不定。在此感谢原简书作者SeanCheney的分享。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三街打工人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值