强连通分量+缩点uva12167

思路:先求强连通分量,然后相同的连通分量缩成一个点,统计出度与入度最大的就是答案

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;
const int maxn=20010;
int n,m;
vector<int> G[maxn];
stack<int> S;
int pre[maxn],lowlink[maxn],dfs_clock,scc_cnt,sccno[maxn];
int in[maxn],out[maxn];
void init()
{
    for(int i=0;i<=n;i++)G[i].clear();
}
void dfs(int u)
{
    pre[u]=lowlink[u]=++dfs_clock;
    S.push(u);
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if(!pre[v])
        {
            dfs(v);
            lowlink[u]=min(lowlink[u],lowlink[v]);
        }
        else if(!sccno[v])
            lowlink[u]=min(lowlink[u],pre[v]);
    }
    if(lowlink[u]==pre[u])
    {
        scc_cnt++;
        while(true)
        {
            int x=S.top();S.pop();
            sccno[x]=scc_cnt;
            if(x==u)break;
        }
    }
}
void find_scc()
{
    dfs_clock=scc_cnt=0;
    memset(sccno,0,sizeof(sccno));
    memset(pre,0,sizeof(pre));
    for(int i=1;i<=n;i++)
        if(!pre[i])dfs(i);
}
int main()
{
    //freopen("in.txt","r",stdin);
    int t,a,b;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        init();
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&a,&b);
            G[a].push_back(b);
        }
        find_scc();
        for(int i=1;i<=scc_cnt;i++)in[i]=out[i]=1;
        for(int u=1;u<=n;u++)
            for(int i=0;i<G[u].size();i++)
            {
                int v=G[u][i];
                if(sccno[u]!=sccno[v])in[sccno[v]]=out[sccno[u]]=0;
            }
        int a=0,b=0;
        for(int i=1;i<=scc_cnt;i++)
        {
            if(in[i])a++;
            if(out[i])b++;
        }
        int ans=max(a,b);
        if(scc_cnt==1)cout<<0<<endl;
        else cout<<ans<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值