k-mean algorithm is simple ,we can understand easily ,it is unnecessary to describe the process .as we all know the algorithm have some disadvantages and weakness . but we can not leave it away from our world ,the simplicity and effectiveness make it irreplaceable. so the fuzzy C-mean clustering as the regularity of the k-mean is used widely , the biggest difference is the class-membership function. during the k-mean ,the weight of a sample to each class is zero or one ,but the fuzzy c-mean algorithm make changes,the weight is between zero and one .others is similar !
the principle of k-mean is the minimum of the difference in inter-class !
the principle of fuzzy C-mean clustering is the minimum of the weighted difference in inter-class !