K-mean and fuzzy C-mean clustering

    k-mean algorithm is simple ,we can understand easily ,it is unnecessary to describe the process  .as  we  all know  the algorithm have some disadvantages and weakness . but we can not leave it away from our world ,the simplicity and effectiveness make it irreplaceable.  so the fuzzy C-mean clustering as the regularity of the k-mean is used widely , the biggest difference is the class-membership function. during the k-mean ,the weight of  a sample to each class is zero or one ,but  the fuzzy c-mean algorithm make changes,the weight is between zero and one .others is similar !

    the principle of k-mean is the minimum of the difference in inter-class !

    the principle of fuzzy C-mean clustering is the  minimum of the weighted difference in inter-class ! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值