海森矩阵的应用:多元函数极值的判定

Hessian Matrix 主要是由 变量的二阶导数所组成,对角线上的元素为:对某一元素的二阶导数,而非对角线元素是对不同元素的混合偏导!它是对称矩阵!

对于多元函数f(x1,x2,x3……xn)二阶连续可导,并且在临界点M=(x1,x2,x3……xn)处梯度为0,M为驻点,仅通过一阶导数无法判断是否为极大、小值点。

记M处的海森矩阵为H(M),由于f(X)在M点连续,所以H(M)是一个(n*n)对称矩阵。对于H(M)有如下结论:

1.如果H(M)是一个正定矩阵,则临界点M点是一个极小值点。

2..如果H(M)是一个负定矩阵,则临界点M点是一个极大值点。

3..如果H(M)是一个不定矩阵,则临界点M点不是极值点。

 

正定矩阵:对于埃米尔特矩阵(对称矩阵的推广),如果有X属于Rn,即X是n维的向量!有X*H(M)X>0,

负定矩阵:对于埃米尔特矩阵(对称矩阵的推广),如果有X属于Rn,即X是n维的向量!有X*H(M)X<0,

半正定矩阵:对于埃米尔特矩阵(对称矩阵的推广),如果有X属于Rn,即X是n维的向量!有X*H(M)X>=0,

半负定矩阵:对于埃米尔特矩阵(对称矩阵的推广),如果有X属于Rn,即X是n维的向量!有X*H(M)X<=0,

不定矩阵:若它既不是半正定矩阵也不是办负定矩阵则称不定矩阵。

正定矩阵的判别:

1.将矩阵华为P*VP则V为对角矩阵,其对角线上的全部元素为正,则成立。

2.顺序主子式的行列式全为正。

3.……

在高等数学中我们学过,对极值的判定是根据驻点处的二阶导数的值进行判别,一元函数的求值,只是求解其二阶导数就能直接判断,二元函数的求值,对变量求二阶偏导数和各自的混合偏导,然后进行判别,当AC-B^2=0是亦无法进行判别,拓展值更高维度时,我们只是研究出了其具有的必要条件,即低一阶导数的值为0。故此高数中的方法具有很大的局限性!

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Hessian矩阵多元函数极值判定的重要工具。对于一个具有n个变量的多元函数f(x1, x2, ... , xn),Hessian矩阵是一个n×n的矩阵,其元素为二阶偏导数。Hessian矩阵的定义如下: Hessian矩阵的第i行第j列元素,即Hessian矩阵的第(i, j)元素,表示函数f对第i个变量x_i和第j个变量x_j的混合偏导数。 多元函数极值可能出现在驻点 (critical point)或者临界点 (boundary point)上,通过Hessian矩阵可以判断一个驻点的极值类型。具体的判断方法如下: 1. 首先,计算函数f的一阶偏导数,求出所有的驻点。 2. 对于每个驻点,计算Hessian矩阵。 3. 判断Hessian矩阵的正定性(positive definite)、负定性(negative definite)、不定性(indefinite)或者半定性(positive semi-definite和negative semi-definite)。 - 如果Hessian矩阵在驻点处是正定的,则该点为函数的极小值点; - 如果Hessian矩阵在驻点处是负定的,则该点为函数的极大值点; - 如果Hessian矩阵在驻点处是不定的,则该点既不是极小值点也不是极大值点; - 如果Hessian矩阵在驻点处是半定的,则需要进一步分析。 4. 进一步分析半定性的情况。 - 如果Hessian矩阵在驻点处是半正定的,则该点可能是函数的极小值点,也可能是鞍点; - 如果Hessian矩阵在驻点处是半负定的,则该点可能是函数的极大值点,也可能是鞍点; - 如果Hessian矩阵在驻点处即半正定又半负定,则该点既可能是函数的极小值点又可能是极大值点。 通过以上步骤,我们可以利用Hessian矩阵判断多元函数的驻点的极值类型,从而找到函数极值点。需要注意的是,Hessian矩阵为对称矩阵,而且其元素的值与函数的表达式有关,要根据具体问题进行计算,以得到准确的极值判定结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值