容斥原理的题目,还是比较简单的,基本上看了没多久,觉得暴力不行,那么应该就是容斥原理了,DFS结合容斥原理 在数论学习中做过几道,基本套法 还是比较统一的,顶多也就是DFS中变量传递的 少与多而已
题意比较简单,n,m,然后给出m个数,求出 区间[0,n-1]内 能被这m个数中任意一个数 整除 的 个数,
运用容斥原理 答案比较清晰,奇数相加偶数相减,能被k个数整除的 数就是 LCM(N1,N2,.......NK),
接下来只需要DFS即可,当然会二进制的 更快更简洁
总是做算法,不如来个陶冶情操的文章一篇: http://www.sanwen.net/subject/3628849/
#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set>
#define ll long long
#define eps 1e-8
#define inf 0xfffffff
//const ll INF = 1ll<<61;
using namespace std;
//vector<pair<int,int> > G;
//typedef pair<int,int > P;
//vector<pair<int,int> > ::iterator iter;
//
//map<ll,int >mp;
//map<ll,int >::iterator p;
ll num[10 + 5];
bool vis[10 + 5];
ll n,m;
ll mark;
ll Gcd(ll a,ll b) {
return b==0?a:Gcd(b,a%b);
}
void dfs(ll s,ll LCM,ll &ans,ll cnt) {
LCM = num[s]/Gcd(LCM,num[s]) * LCM;
if(cnt%2 == 1)
ans += (n-1)/LCM;
else
ans -= (n-1)/LCM;
for(ll i=s+1;i<mark;i++)
dfs(i,LCM,ans,cnt+1);
}
void clear() {
memset(num,0,sizeof(num));
mark = 0;
}
int main() {
while(scanf("%I64d %I64d",&n,&m) == 2) {
mark=0;
for(ll i=0;i<m;i++) {
ll a;
scanf("%I64d",&a);
if(a > 0)
num[mark++] = a;
}
ll ans=0;
for(ll i=0;i<mark;i++)
dfs(i,num[i],ans,1);
printf("%I64d\n",ans);
}
return EXIT_SUCCESS;
}
接下来是ZOJ2836,上面是以前做的,今天做ZOJ2836突然想起来了, 只是一时之间花了比较久的时间,感觉有点慢,人家都是十分钟秒的,所以觉得有必要把这两个题目记下来,做个总结吧,这种纯比 思维的题目 还是要多多做 多多总结的,题意上差不了多少,这里是N,M 给你N个数,找出区间[1,M]内的 能被N个数 任意一个整除的 数的 个数
#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set>
#define ll long long
#define eps 1e-8
#define inf 0xfffffff
//const ll INF = 1ll<<61;
using namespace std;
//vector<pair<int,int> > G;
//typedef pair<int,int > P;
//vector<pair<int,int> > ::iterator iter;
//
//map<ll,int >mp;
//map<ll,int >::iterator p;
ll num[10 + 5];
bool vis[10 + 5];
ll n,m;
ll mark;
ll Gcd(ll a,ll b) {
return b==0?a:Gcd(b,a%b);
}
void dfs(ll s,ll LCM,ll &ans,ll cnt) {
LCM = num[s]/Gcd(LCM,num[s]) * LCM;
if(cnt%2 == 1)
ans += (n-1)/LCM;
else
ans -= (n-1)/LCM;
for(ll i=s+1;i<mark;i++)
dfs(i,LCM,ans,cnt+1);
}
void clear() {
memset(num,0,sizeof(num));
mark = 0;
}
int main() {
while(scanf("%lld %lld",&n,&m) == 2) {
mark=0;
for(ll i=0;i<m;i++) {
ll a;
scanf("%lld",&a);
if(a > 0)
num[mark++] = a;
}
ll ans=0;
for(ll i=0;i<mark;i++)
dfs(i,num[i],ans,1);
printf("%lld\n",ans);
}
return EXIT_SUCCESS;
}