大数据处理之道 (Gibbs Sampling)

本文探讨了AI领域的核心算法,如吉布斯采样、EM算法和MCMC算法的学习途径。通过阅读《Pattern Recognition and Machine Learning》、AI教材及wiki等资源,了解算法原理与实践。反思个人学习进度与研究生目标,强调理论与实践结合的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:简介以及学习的途径

(1)吉布斯采样(Gibbs Sampling)及相关算法  (学习向Gibbs sampling, EM,  MCMC算法 等的好地方)

       1) 推荐大家读Bishop的Pattern Recognition and Machine Learning,讲的很清楚,偏理论一些;

       2) 读artificial Intelligence,2、3版,都有;

       3) 如果英语好的话,最方便的就是查wikipedia,这个说的最清楚(研究生推荐读一读这个)

       4)不要什么都百度去,百度在学术方面目前做的非常差的;Google 学术非常好的,Google 技术问题也是非常棒的,国外的开源网站和社区更多,不像国内的动不动就让你注册,让你付费。

(2)简介:

通俗点的解释一下,sampling就是以一定的概率分布,看发生什么事件。举一个例子 —— 甲只能  E:吃饭、学习、打球,时间     T:上午、下午、晚上,天气   W:晴朗、刮风、下雨。现在要一个sample,这个sample可以是:打球+下午+晴朗  

问题是我们不知道p(E,T,W),或者说,不知道三件事的联合分布。当然,如果知道的话,就没有必要用gibbs sampling了。 但是,我们知道三件事的conditional distribution。也就是说,p(E|T,W),p(T|E,W),p(W|E,T)。现在要做的就是通过这三个已知的条件分布,再用gibbs sampling的方法,得到joint distribution。

具体方法。首先随便初始化一个组合,i.e. 学习+晚上+刮风,然后依条件概率改变其中的一个变量。具体说,假设我们知道晚上+刮风,我们给E生成一个变量,比如,学习-》吃饭。我们再依条件概率改下一个变量,根据学习+刮风,把晚上变成上午。类似地,把刮风变成刮风(当然可以变成相同的变量)。这样学习+晚上+刮风-》吃饭+上午+刮风。

同样的方法,得到一个序列,每个单元包含三个变量,也就是一个马尔可夫链。然后跳过初始的一定数量的单元(比如100个),然后隔一定的数量取一个单元(比如隔20个取1个)。这样sample到的单元,是逼近联合分布的。

吉布斯(Gibbs)抽样可以在给定协方差数据和参数的先验分布条件下获得结构方程参数的后验分布样本。参数的点估计、区间估计和标准误就可以用这些样本数据计算。

吉布斯采样是生成马尔科夫链的一种方法,生成的马尔科夫链可以用来做蒙特卡洛仿真,从而求得一个较复杂的多元分布。

吉布斯采样的具体做法:假设有一个k维的随机向量,现想要构造一条有n个样本的k维向量(n样本马尔科夫序列),那么(随机)初始化一个k维向量,然后固定这个向量其中的k-1个元素,抽取剩下的那个元素(生成给定后验的随机数),这样循环k次,就把整个向量更新了一遍,也就是生成了一个新的样本,把这个整体重复n次就得到了一条马尔科夫链

二:所思所想

 (1)总是,感觉有一种罪恶感,自己现在苦学的C+stl人家大三已经全部自己实现了;我现在学的AKI中文分词工具,人家课程设计就是它;我早就的HTMLparser是人家当年的课程设计;情感分析也是课程设计,各种分类聚类是人家当年的毕设,基于Nutch的搜索的Hadoop人家的毕设;我难道是在弥补我考研所花费的一年时光吗?

(2)研究生到底该干什么?不能仅仅多了一张证件纸吧?难道是中国教育体质出了问题?研究生得做研究,学会系统的分析剖析问题,而非简简单单的机械的写几行代码,而是开阔眼界,多学几个模型原理及其应用,学会那些模型的核心思想。

(3)这可能变得非常自私,要是这样你给导师带来了什么?你给实验室带来了什么?_?问这问题的人一定是目光短浅的人,从长远来看,这样的人给学校给国家带来的利益更大,当然没有直接的把导师的钱包变鼓起来,因为他没有对导师的攻城写过一行代码,没有设计过一份文档

(4)导师亏了,那还行?因为导师我是行使权力的人,对我不利,不能给我带来利益,这肯定不行,不能让他毕业,尽管他将来能给学校国家带来更大的利益和贡献,但那跟我有毛关系!

### Gibbs Sampling Algorithm in Machine Learning Gibbs采样是一种用于马尔可夫链蒙特卡罗(MCMC)方法中的重要技术,广泛应用于贝叶斯统计和机器学习领域。该算法通过迭代更新变量的概率分布来近似复杂的多维概率分布。 #### 原理 在一个含有多个随机变量的联合概率模型中,直接计算条件概率可能非常困难。然而,在给定其他所有变量的情况下,某些单个变量的条件概率可以更容易地被估计出来。基于这一观察,Gibbs采样采用逐个抽取的方式逐步构建样本序列: 对于每一个维度上的参数θ_i,当已知其余n-1个维度的具体取值时,可以从对应的条件分布p(θ_i|θ_(-i))中抽取出新的样本作为下一个状态的一部分[^2]。 ```python def gibbs_sampling(num_samples, initial_values, conditionals): samples = [initial_values] for _ in range(num_samples): new_sample = list(samples[-1]) for i in range(len(new_sample)): current_conditional = conditionals[i] # Sample from conditional distribution p(theta_i | theta_{-i}) new_value = np.random.choice( possible_values, p=current_conditional(new_sample[:i] + new_sample[i+1:]) ) new_sample[i] = new_value samples.append(new_sample) return samples[1:] ``` 此过程重复多次之后,产生的样本集能够很好地代表原始复杂分布下的数据特征。 #### 实现方法 上述伪代码展示了如何实现基本形式的Gibbs采样器。实际应用中还需要考虑诸如收敛诊断、混合速度优化等问题。此外,针对特定类型的模型结构(如高斯混合模型),可能存在更高效的变体版本。 #### 应用场景 Gibbs采样的灵活性使其适用于各种不同的场合,特别是在处理具有隐含变量或缺失数据的问题上表现出色。典型的应用案例包括但不限于: - **主题建模**:LDA(Latent Dirichlet Allocation)利用Gibbs采样来进行文档集合的主题推断; - **图像修复**:通过对损坏像素周围的邻域信息进行推理填补丢失部分; - **基因表达分析**:帮助识别不同条件下生物样品之间的差异表达模式;
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值