题目大意:
构造一个串使得有两个以及两个以上的目标串。长度为L的所有串中有多少个这样的串。
思路分析:
用所有的数量减去只有1个和没有目标串的数量就是答案了。
如果数据很小,可以用dp解。dp[i][j][k] 表示长度为i,走到自动机的j,有k个目标串的数量。
转移便是。
if(j->next[d] ->isword) dp[i+1][j->next][1] += dp[i][j][0].
else dp[i+1][j->next][0]+=dp[i][j][0],dp[i+1][j->next][1] += dp[i][j][1]...
现在长度达到百万。
所以用矩阵优化。
设自动机的节点数量为idx,那么就开一个(2*idx,2*idx)的矩阵。
如果i<idx j<idx 表示 开始在i的时候没有目标串,走到j也没有。
如果i<idx j>idx 表示 开始在i的时候没有目标串,走到j有了一个。
后面同理。。。
那么构造这个矩阵便是按照上面的dp方程类似构造。
if(j->next[d]->isword)matrix [i][j->next->index+idx]++; 开始的时候没有,走过来加一个
else matrix [i][j]++,matrix [i+idx][j+idx] 开始的时候没有,走到j也没有 和 开始的时候有一个,走到j还是一个。
矩阵的构造是难= =
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define N 75
using namespace std;
const int mod = 10007;
const char tab = 'a';
const int max_next = 4;
int rev[256];
struct trie
{
struct trie *fail;
struct trie *next[max_next];
int isword;
int index;
};
struct AC
{
trie *que[100005],*root,ac[100005];
int head,tail;
int idx;
trie *New()
{
trie *temp=&ac[idx];
for(int i=0;i<max_next;i++)temp->next[i]=NULL;
temp->fail=NULL;
temp->isword=0;
temp->index=idx++;
return temp;
}
void init()
{
idx=0;
root=New();
}
void Insert(trie *root,char *word,int len){
trie *t=root;
for(int i=0;i<len;i++){
if(t->next[rev[word[i]]]==NULL)
t->next[rev[word[i]]]=New();
t=t->next[rev[word[i]]];
}
t->isword++;
}
void acbuild(trie *root){
int head=0,tail=0;
que[tail++]=root;
root->fail=NULL;
while(head<tail){
trie *temp=que[head++],*p;
for(int i=0;i<max_next;i++){
if(temp->next[i]){
if(temp==root)temp->next[i]->fail=root;
else {
p=temp->fail;
while(p!=NULL){
if(p->next[i]){
temp->next[i]->fail=p->next[i];
break;
}
p=p->fail;
}
if(p==NULL)temp->next[i]->fail=root;
}
if(temp->next[i]->fail->isword)temp->next[i]->isword++;
que[tail++]=temp->next[i];
}
else if(temp==root)temp->next[i]=root;
else temp->next[i]=temp->fail->next[i];
}
}
}
void tra()
{
for(int i=0;i<idx;i++)
{
if(ac[i].fail!=NULL)printf("fail = %d ",ac[i].fail->index);
for(int k=0;k<max_next;k++)
printf("%d ",ac[i].next[k]->index);
puts("");
}
}
}sa;
struct matrix
{
int r,c;
int data[N][N];
matrix(){}
matrix(int _r,int _c):r(_r),c(_c){memset(data,0,sizeof data);}
friend matrix operator * (const matrix A,const matrix B)
{
matrix res;
res.r=A.r;res.c=B.c;
memset(res.data,0,sizeof res.data);
for(int i=0;i<A.r;i++)
{
for(int j=0;j<B.c;j++)
{
for(int k=0;k<A.c;k++)
{
if(A.data[i][k] && B.data[k][j]){
res.data[i][j]+=A.data[i][k]*B.data[k][j];
res.data[i][j]%=mod;
}
}
}
}
return res;
}
friend matrix operator + (const matrix A,const matrix B)
{
matrix res;
res.r=A.r;res.c=A.c;
memset(res.data,0,sizeof res.data);
for(int i=0;i<A.r;i++)
{
for(int j=0;j<A.c;j++)
{
res.data[i][j]=A.data[i][j]+B.data[i][j];
res.data[i][j]%=mod;
}
}
return res;
}
friend matrix operator - (const matrix A,const matrix B)
{
matrix res;
res.r=A.r;res.c=A.c;
memset(res.data,0,sizeof res.data);
for(int i=0;i<A.r;i++)
{
for(int j=0;j<A.c;j++)
{
res.data[i][j]=A.data[i][j]-B.data[i][j];
res.data[i][j]=(res.data[i][j]%mod+mod)%mod;
}
}
return res;
}
friend matrix operator ^ (matrix A,int n)
{
matrix res;
res.r=A.r;res.c=A.c;
memset(res.data,0,sizeof res.data);
for(int i=0;i<A.r;i++)res.data[i][i]=1;
while(n)
{
if(n&1)res=res*A;
A=A*A;
n>>=1;
}
return res;
}
void print()
{
for(int i=0;i<r;i++)
{
for(int j=0;j<c;j++)
printf("%d ",data[i][j]);
puts("");
}
}
}E,zero;
char word[30];
int main()
{
rev['A']=0;
rev['C']=1;
rev['G']=2;
rev['T']=3;
int n,L;
while(scanf("%d%d",&n,&L)!=EOF)
{
sa.init();
for(int i=1;i<=n;i++)
{
scanf("%s",word);
sa.Insert(sa.root,word,strlen(word));
}
sa.acbuild(sa.root);
E=matrix(sa.idx*2,sa.idx*2);
for(int i=0;i<sa.idx*2;i++)E.data[i][i]=1;
matrix origin=matrix(sa.idx*2,sa.idx*2);
for(int i=0;i<sa.idx;i++)
{
for(int j=0;j<4;j++)
{
int temp=sa.ac[i].next[j]->index;
if(sa.ac[i].next[j]->isword)
origin.data[i][temp+sa.idx]++;
else
origin.data[i][temp]++,origin.data[i+sa.idx][temp+sa.idx]++;
}
}
origin.print();
origin=origin^L;
int ans=1;
int x=4;
int t=L;
while(t)
{
if(t&1)ans=(ans*x)%mod;
x=(x*x)%mod;
t>>=1;
}
for(int i=0;i<2*sa.idx;i++)
{
ans-=origin.data[0][i];
ans=(ans+mod)%mod;
}
printf("%d\n",ans);
}
return 0;
}