ACdream 1148 GCD SUM (久违的莫比乌斯)

题目链接

题意:给出N,M
执行如下程序:
long long  ans = 0,ansx = 0,ansy = 0;
for(int i = 1; i <= N; i ++)
   for(int j = 1; j <= M; j ++)
       if(gcd(i,j) == 1) ans ++,ansx += i,ansy += j;
cout << ans << " " << ansx << " " << ansy << endl;


思路: 首先要会莫比乌斯,然后对于ans,自然是非常好求的,现在就是怎么求ansx和ansy。 设

手误!上面的d%gcd(i, j)=0 实际应为 gcd(i, j)%d=0


反演后得到:



因为n/i,m/i的值是分段的,每段都是相同的,分别有sqrt级别的段数,所以(n/i, m/i)也是sqrt级别的段数。所以这个可以分段求了,然后预处理出i*mu(i)的前缀和即可!


code:

#include 
   
   
    
    
#include 
    
    
     
     
#include 
     
     
      
      
using namespace std;
typedef long long ll;

const int N = 100000+5;
int pri[N], mu[N], pnum, presum[N];
ll presum2[N];
bool vis[N];

void mobius(int n) {
    mu[1] = 1; pnum = 0;
    for(int i = 2;i <= n; i++) {
        if(!vis[i]) {
            pri[pnum++] = i;
            mu[i] = -1;
        }
        for(int j = 0;j < pnum; j++) {
            if(i*pri[j] > n)    break;
            vis[i*pri[j]] = 1;
            if(i%pri[j] == 0) {
                mu[i*pri[j]] = 0;
                break;
            }
            mu[i*pri[j]] = -mu[i];
        }
    }
    for(int i = 1;i <= n; i++) {
        presum2[i] = presum2[i-1] + i*mu[i];
    }
    for(int i = 1;i <= n; i++)  presum[i] = presum[i-1]+mu[i];
}

int n, m;

bool input() {
    return scanf("%d%d", &n, &m) == 2;
}

void solve() {
    int top = min(n, m);
    ll ans = 0, ansx = 0, ansy = 0;
    for(int i = 1;i <= top; i++) {
        int tmp1 = n/i, tmp2 = m/i;
        int nxt = min(n/tmp1, m/tmp2);
        //printf("i = %d tmp1 = %d tmp2 = %d nxt = %d\n", i, tmp1, tmp2, nxt);
        ans += (ll)(n/i)*(m/i)*(presum[nxt]-presum[i-1]);
        ansx += (ll)m/i*(n/i + (ll)n/i*(n/i))/2*(presum2[nxt] - presum2[i-1]);
        ansy += (ll)n/i*(m/i + (ll)m/i*(m/i))/2*(presum2[nxt] - presum2[i-1]);
        i = nxt;
    }
    printf("%lld %lld %lld\n", ans, ansx, ansy);
}

int main() {
    mobius(100000);
    while(input()) {
        solve();
    }
    return 0;
}

     
     
    
    
   
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值