概念
- 数据流入速度远高于速度处理速度,对流处理系统造成压力
- 需要一种机制进行处理,就是背压机制
back pressure
应用
1.5版本之前
receiver-based
receiver-based数据接收器,可以配置spark.streaming.receiver.maxRate参数来限制每个receiver每秒最大可以接收的数据量
direct-approach
direct-approach方式接收数据,可以配置 spark.streaming.kafka.maxRatePerPartition 参数来限制每个kafka分区最多读取的数据量。
缺点
实现需要进行压测,来设置最大值。参数的设置必须合理,如果集群处理能力高于配置的速率,则会造成资源的浪费。
参数需要手动设置,设置过后必须重启streaming服务。
新版背压机制(spark1.5之后)
新版的背压机制不需要手动干预,spark streaming能够根据当前数据量以及集群状态来预估下个批次最优速率。
相关参数
spark.streaming.backpressure.enabled
设置为 true 开启反压
spark.streaming.kafka.maxRatePerPartition
每个partition每秒最多消费条数
spark.streaming.backpressure.rateEstimator
速率估算器类,默认值为 pid ,目前 Spark 只支持这个。
以下参数仅针对PID速率估算器设置
spark.streaming.backpressure.pid.proportional:
用于响应错误的权重(最后批次和当前批次之间的更改)。
默认值为1,只能设置成非负值。
spark.streaming.backpressure.pid.integral:
错误积累的响应权重,具有抑制作用(有效阻尼)。默认值为 0.2 ,只能设置成非负值。
spark.streaming.backpressure.pid.derived:
对错误趋势的响应权重。 这可能会引起 batch size 的波动,可以帮助快速增加/减少容量。默认值为0,只能设置成非负值。
spark.streaming.backpressure.pid.minRate:
可以估算的最低费率是多少。默认值为 100,只能设置成非负值。
总结
- 由于
背压机制,spark可以动态的实时感知数据量大小和资源情况,按照现有的资源进行拉去数据,保证每个批次数据处理不会太大 - 新版一般无需手动调整
本文介绍了Spark Streaming的背压机制。当数据流入速度远高于处理速度时,需要背压机制处理。阐述了1.5版本之前的两种应用方式及缺点,还介绍了新版(1.5之后)背压机制,它能根据数据量和集群状态预估下个批次,一般无需手动调整。
1276

被折叠的 条评论
为什么被折叠?



