树在计算机科学中的一个重要应用是存储程序的内部结构。
当解释器或编译器分析程序的时候,它会构造一个用来提取程序结构的解析树
(parse tree)。例如,考虑这样一个简单的表达式:
(2+3) * 4+5 * 6
这个表达式可以用图7.4所示的树的形式来表现。可以仔细看看,树的层次结构
是怎么消除对括号的需要的。
表达式的基本操作数是树的叶节点,
运算符是树的内部节点
在树的低层级
里的操作必须要被优先执行,只有这样它的结果才能够被用在更高层级的表达式里。很明显,加法2+3必须是第一个需要执行的操作,这是因为它出现在了树的最底层。
将表达式表现为树结构之后,我们就能够做很多有趣的事情了。
编译器
将遍历这个结构来生成执行计算的一系列机器指令
。
解释器
也会使用这个结构来执行这个表达式。它可以获取两个子节点的值,再使用这个操作来计算出每个节点的值。如果其中的一个或两个子节点本身是一个运算符,那么就必须要先对这个子节点进行计算。一个简单的树的后序遍历就能够被用来计算表达式:
def evaluate(tree):
if tree's root is an operand:
return root data
else:
leftValue=evaluate(left subtree)
rightValue=evaluate(right subtree)
result=apply operator at root to leftValue and rightValue
return result
如果你够仔细的话,你会发现这个算法其实是一个用来计算表达式的后缀版本的递归算法
。简单地进行后序遍历
,这个表达式树会产生这个序列:
2 3+4 * 5 6 * +
而这正好是我们最初的表达式的后缀表示法。
总结
树
可以用于计算机解析表达式