分治算法
的基本思想是把问题分解
为多个较小的子问题
。分治算法
通常会有一个步骤是用来将多个子问题
的解决方案进行整合,从而形成针对初始问题的解决方案。- 因为会把
树结构
分为各个子树来进行处理,所以很多处理树的算法都可以被视为分治算法
。
对于用二分搜索算法来查找元素来说,因为我们会把列表分为一半,并且在这一半里去查找元素,所以也可以归于分治算法。
不同的是,二分搜索算法并不会像大多数分治算法那样去合并多个子问题的解决方案。
- 许多分治算法会被写成
递归函数
,从而可以对子问题进行递归调用。然而,分治算法并不是必须被写成递归函数的。 二分搜索算法
就可以被写成递归或者被写成迭代。- 对于简单的迭代算法,
迭代通常好于递归
,这是因为在相同的渐进运行时间下,递归的开销会让它不如迭代版本的算法有效。 - 分析
递归函数
所需的时间复杂度通常会比分析迭代算法
的解决方案的时间复杂度要更高一些。 - 既然许多分治算法都是通过递归实现的,那么在讨论其他分治算法之前,我们先讨论如何去分析
递归函数的运行时间
的相关技术。
总结
分治算法
并不是一定要写成递归
形式