之前利用yolov3的darknet的python接口,把keras框架下跑的yolo3取代了,FPS从原来的6.几到现在的11.几,还是源接口比较好用,较为快速。
后续需要做的:
1 把之前的车道线检测,轧线判断的code放入前向网络load模型的工程当中,这个是识别轧线的重要部分,需要用视频来识别。也就是能检测跟踪车辆框,然后车道线能在视频中显示,还能在车辆轧线的时候判断轧线并输出。
2 使用一个滑动窗口或者其他数据结构,存储视频当中的检测到的车辆的BBOX的坐标信息(这里可以尝试把darknet的输出检测坐标拿过来保存滑动,不可能一直保存,只是保存一部分的)。
3 如果未发现轧线的情况,继续,若发生轧线,触发deepsort进行跟踪(也就是说需要修改deepsort的源码,触发条件改一下,轧线的情况开始跟踪。)
4 使用一种特征提取器(或者尝试deepsort的残差网络),对轧线的车辆与滑动窗口文件中的车辆框当中的特征进行分析比对,看是否是同一辆车。
5 根据所检测到的车道线的位置以及前几步的结果判断车辆违章变道的信息。
6 违章车辆的车牌识别
7 算法整合到TX2上,与无人机飞控进行通信传数据结果。
8 扩展功能(如应急车道占用与行驶)
下一阶段任务是:
整合模块,视频分析,滑动窗口保存轧线前的车辆bbox坐标等信息。deepsort源码检测跟踪彻底搞懂。
3159

被折叠的 条评论
为什么被折叠?



