CUDA中ThreadID计算方法理解

这篇博客详细解析了CUDA编程中线程块在多维grid中的坐标表示,以及如何将高维坐标转换为一维ID。内容涵盖1Dgrid,1Dblock, 3Dgrid,1Dblock, 1Dgrid,2Dblock和3Dgrid,3Dblock等场景下的坐标转换公式,帮助理解GPU并行计算的底层原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先引入一个栗子:被除数 = 除数 * 商 + 余数

类别以下, 用公式表示:最终的线程Id = blockId * blockSize + threadId

  • blockId :当前 block 在 grid 中的坐标(可能是1维到3维)
  • blockSize :block 的大小,描述其中含有多少个 thread
  • threadId :当前 thread 在 block 中的坐标(同样从1维到3维)

下面先理清几个关键点:

grid 中 含有若干个 blocks,其中 blocks 的数量由 gridDim.x/y/z 来描述。某个 block 在此 grid 中的坐标由 blockIdx.x/y/z 描述。

blocks 中含有若干个 threads,其中 threads 的数量由 blockDim.x/y/z 来描述。某个 thread 在此 block 中的坐标由 threadIdx.x/y/z 描述。

接着一个多维的坐标如何用一维数据表达呢?这里大家想一想两位数和三位数,就是很好的例子。数字 = 百位数字 * 100 + 十位数字 * 10 + 个位数字。
当我们得知每个维度上的大小时,就可以利用这样的进制将三维坐标转换为1维坐标
一般来说坐标(x, y, z)分别所在的维度大小是(Dx, Dy, Dz),一般会把 z 看成高纬度,接着是 y ,最后是 x。

高维度坐标转一维坐标公式 id = Dx * Dy * z + Dx *

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值