分类
文章平均质量分 79
你看起来很好吃
这个作者很懒,什么都没留下…
展开
-
MaxEnt
最大熵原理当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。(不做主观假设这点很重要。)在这种情况下,概率分布最均匀,预测的风险最小。因为这时概率分布的信息熵最大,所以人们称这种模型叫"最大熵模型"。我们常说,不要把所有 的鸡蛋放在一个篮子里,其实就是最大熵原理的一个朴素的说法,因为当我们遇到不确定性时,就要保转载 2016-09-19 11:28:11 · 5742 阅读 · 1 评论 -
SVM
SVM概率输出Libsvm安装、使用Libsvm数据集格式转换Libsvm官网转载 2016-09-19 11:28:50 · 210 阅读 · 0 评论 -
人工神经网络(ANN)
人工神经网络(ANN) > longxinchen_1128_2015-11-30_221922.jpg" height="250" src="http://wiki.sankuai.com/download/attachments/550600864/longxinchen_1128_2015-11-30_221922.jpg?version=1&modificationDate=1471676转载 2016-09-19 11:29:25 · 493 阅读 · 0 评论 -
逻辑回归(LR)
背景知识:二元的分类问题比如“是否为乳腺癌二分类问题”,我们可以用线性回归的方法求出适合数据的一条直线: 逻辑回归(LR) > 24225255-58bb5f12f94449c093ae4a87e3dfc7bc.gif" height="400" src="http://wiki.sankuai.com/download/attachments/550797985/242转载 2016-09-19 11:31:04 · 1648 阅读 · 0 评论 -
支持向量机
背景知识:我们拿到一个有标记的数据集后,会想,如果我能有个数学公式来预测lable就好了。这个数学公式可能长这样:wTx。 接下来我们就想,我们预测的准确吗?于是我们想到了一些验证准确性的函数,或者换句话,预测结果与真实结果误差的函数,也就是损失函数。我们可能会找到很完美的数学公式,让损失函数最小,但是这仅仅是训练集上的。。。可能在测试集或其他数据集上就会表现很差,这个现象就是过拟原创 2017-02-19 20:55:32 · 501 阅读 · 0 评论 -
GBDT
一、理论训练流程:1 估计初值2 按如下方式构造M颗树 2.1 随机选取部分样本作为本颗树的训练数据 2.2 按如下方式寻找最优分裂点,进行N次叶子节点的分裂 2.2.1 对当前所有叶子节点 2.2.1.1转载 2016-09-19 11:26:59 · 823 阅读 · 1 评论