Project Euler -> problem 12

12. 三角形数序列是由对自然数的连加构造而成的。所以第七个三角形数是1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. 那么三角形数序列中的前十个是:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

下面我们列出前七个三角形数的约数:

1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
可以看出28是第一个拥有超过5个约数的三角形数。

那么第一个拥有超过500个约数的三角形数是多少?

int total(long long n){
    int sum=0;
    long long i;
    for(i=1;i*i
        if(n%i==0)
            sum+=2;
    }
    if(i*i==n)
        sum++;
    return sum;
}

int main(void)
{
long long i=1,j=1;

while(total(i)<500){
i+=++j;
}
printf("%lld",i);
return 0;
}

Answer:
76576500
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值